Search for "carbocations" in Full Text gives 53 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2019, 15, 1304–1312, doi:10.3762/bjoc.15.129
Graphical Abstract
Scheme 1: Asymmetric carbocation catalysis.
Scheme 2: Synthesis of new carbocation catalysts with weakly coordinating metal-based phosphate anion.
Figure 1: Dissociation of latent carbocation by the use of Lewis acids. a) UV–vis absorption spectra of TP (0...
Scheme 3: a) The reaction with 9,10-dimethylanthracene (3b). b) Gram-scale reaction of 3a and 4k, and transfo...
Beilstein J. Org. Chem. 2019, 15, 789–794, doi:10.3762/bjoc.15.75
Graphical Abstract
Figure 1: Structures of achiral terpenes: (E)-β-farnesene (1), α-humulene (2), 1,8-cineol (3) and sodorifen (4...
Figure 2: A) Total ion chromatogram of a hexane extract from the incubation of FPP with BbS and B) EI mass sp...
Scheme 1: Cyclisation mechanism to 5 involving either the intermediates (R)-NPP and (S)-A (path A) or (S)-NPP...
Figure 3: Total ion chromatograms of hexane extracts from incubation experiments with BbS and A) (R)-NPP, B) (...
Figure 4: Hypothetical BbS active site comparable conformational folds of A) FPP, B) (R)- and C) (S)-NPP expl...
Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29
Graphical Abstract
Scheme 1: Representative strategies for the formation of alkylidenecyclopropanes from cyclopropenes and scope...
Scheme 2: [2,3]-Sigmatropic rearrangement of phosphinites 2a–h.
Scheme 3: [2,3]-Sigmatropic rearrangement of a phosphinite derived from enantioenriched cyclopropenylcarbinol...
Scheme 4: Selective reduction of phosphine oxide (E)-3f.
Scheme 5: Attempted thermal [2,3]-sigmatropic rearrangement of phosphinite 6a.
Scheme 6: Computed activation barriers and free enthalpies.
Scheme 7: [2,3]-Sigmatropic rearrangement of phosphinites 6a–j.
Scheme 8: Proposed mechanism for the Lewis base-catalyzed rearrangement of phosphinites 6.
Scheme 9: [3,3]-Sigmatropic rearrangement of tertiary cyclopropenylcarbinyl acetates 10a–c.
Scheme 10: [3,3]-Sigmatropic rearrangement of secondary cyclopropenylcarbinyl esters 10d–h.
Scheme 11: [3,3]-Sigmatropic rearrangement of trichoroacetimidates 12a–i.
Scheme 12: Reaction of trichloroacetamide 13f with pyrrolidine.
Scheme 13: Catalytic hydrogenation of (arylmethylene)cyclopropropane 13f.
Scheme 14: Instability of trichloroacetimidates 21a–c derived from cyclopropenylcarbinols 20a–c.
Scheme 15: [3,3]-Sigmatropic rearrangement of cyanate 27 generated from cyclopropenylcarbinyl carbamate 26.
Scheme 16: Synthesis of alkylidene(aminocyclopropane) derivatives 30–37 from carbamate 26.
Scheme 17: Scope of the dehydration–[3,3]-sigmatropic rearrangement sequence of cyclopropenylcarbinyl carbamat...
Scheme 18: Formation of trifluoroacetamide 50 from carbamate 49.
Scheme 19: Formation of alkylidene[(N-trifluoroacetylamino)cyclopropanes] 51–54.
Scheme 20: Diastereoselective hydrogenation of alkylidenecyclopropane 51.
Scheme 21: Ireland–Claisen rearrangement of cyclopropenylcarbinyl glycolates 56a–l.
Scheme 22: Synthesis and Ireland–Claisen rearrangement of glycolate 61 possessing gem-diester substitution at ...
Scheme 23: Synthesis of alkylidene(gem-difluorocyclopropanes) 66a–h, and 66k–n from propargyl glycolates 64a–n....
Scheme 24: Ireland–Claisen rearrangement of N,N-diBoc glycinates 67a and 67b.
Scheme 25: Diastereoselective hydrogenation of alkylidenecyclopropanes 58a and 74.
Scheme 26: Synthesis of functionalized gem-difluorocyclopropanes 76 and 77 from alkylidenecyclopropane 66a.
Scheme 27: Access to oxa- and azabicyclic compounds 78–80.
Beilstein J. Org. Chem. 2018, 14, 1826–1833, doi:10.3762/bjoc.14.155
Graphical Abstract
Figure 1: Examples of marketed pharmaceutical 1,2,4-triazolobenzodiazepines.
Scheme 1: Preparation of N-acylated 2,3-dihydro-4(1H)-quinolones 6.
Scheme 2: Synthesis of α-acetoxyazo compounds 8a–g. Reaction conditions: for synthesis of 8a: 7a (10.42 mmol)...
Scheme 3: Synthesis of tricyclic benzo[b][1,2,4]triazolo[1,5-d][1,4]diazepinium salts 10. Reaction conditions...
Scheme 4: Synthesis of N(1)-unsubstituted benzo[b][1,2,4]triazolo[1,5-d][1,4]diazepines 13. Reaction conditio...
Scheme 5: Mechanistic rationale for the [3+ + 2]-cycloaddition/rearrangement reaction.
Figure 2: Crystal structure of salt 10k. The displacement ellipsoids are drawn at the 30% probability level.
Figure 3: Crystal structure of the free base 13e. The displacement ellipsoids are drawn at the 30% probabilit...
Beilstein J. Org. Chem. 2017, 13, 1669–1669, doi:10.3762/bjoc.13.161
Figure 1: Corrected Figure 6 of the original article. The portion of the norborn-2-en-7-ylmethyl cation PES e...
Beilstein J. Org. Chem. 2016, 12, 1040–1064, doi:10.3762/bjoc.12.99
Graphical Abstract
Figure 1: Road map to enhanced C–H activation reactivity.
Scheme 1: Concerted metalation–deprotonation and elelectrophilic palladation pathways for C–H activation.
Scheme 2: Routes for generation of cationic palladium(II) species.
Scheme 3: Optimized conditions for C–H arylations at room temperature.
Scheme 4: Biaryl formation catalyzed by Pd(OAc)2.
Figure 2: C–H arylation results. Conditions A: Conducted at rt for 20 h in 2 wt % Brij 35/water (1 mL) with 1...
Figure 3: Monoarylations in water at rt. Conditions A: Conducted at rt for 20 h in 2 wt % Brij 35/water with ...
Scheme 5: Selective arylation of a 1-naphthylurea derivative.
Figure 4: Fujiwara–Moritani coupling rreactions in water. Conditions A: 10 mol % [Pd(MeCN)4](BF4)2, 1 equiv B...
Figure 5: Optimization. Conducted at rt for 8 h or as otherwise noted in EtOAc with 10 mol % Pd catalyst, AgO...
Figure 6: Representative results in EtOAc. Conducted at rt in EtOAc with 10 mol % Pd(OAc)2, HBF4 (1 equiv), a...
Scheme 6: Previous syntheses of boscalid®.
Scheme 7: Synthesis of boscalid®. aConducted at rt for 20 h in EtOAc with 10 mol % [Pd(MeCN)4](BF4)2, BQ (5 e...
Scheme 8: Hypothetical reaction sequence for cationic Pd(II)-catalyzed aromatic C–H activation reactions.
Scheme 9: Palladacycle formation.
Figure 7: X-ray structure of palladacycle 6 with thermal ellipsoids at the 50% probability level. BF4 and hyd...
Figure 8: NMR studies. A: The reaction of [Pd(MeCN)4](BF4)2 and 3-MeOC6H4NHCONMe2 in acetone-d6. B: The react...
Scheme 10: The generation of cationic Pd(II) from Pd(OAc)2.
Scheme 11: Electrophilic substitution of aromatic hydrogen by cationic palladium(II) species.
Scheme 12: Attempted reactions of palladacycle 6.
Scheme 13: The impact of MeCN on C-H activation/coupling reactions.
Scheme 14: Stoichiometric MeCN-free reactions. a2% Brij 35 was used instead of EtOAc.
Scheme 15: The reactions of divalent palladacycles.
Scheme 16: Role of BQ in stoichiometric Fujiwara–Moritani and Suzuki–Miyaura coupling reactions. aYields based...
Scheme 17: Proposed role of BQ in Fujiwara–Moritani reactions.
Scheme 18: Proposed role of BQ in Suzuki–Miyaura coupling reactions.
Scheme 19: Stoichiometric C–H arylation of iodobenzene. aYields based on Pd.
Scheme 20: Impact of acetate on the cationicity of Pd.
Scheme 21: Roles of additives in C–H arylation.
Scheme 22: Cross-coupling in the presence of AgBF4.
Scheme 23: A proposed catalytic cycle for Fujiwara–Moritani reactions.
Scheme 24: Proposed catalytic cycle of C–H activation/Suzuki–Miyaura coupling reactions.
Scheme 25: A proposed catalytic cycle for C–H arylation involving a Pd(IV) intermediate.
Scheme 26: Selected reactions of divalent palladacycles.
Beilstein J. Org. Chem. 2016, 12, 377–390, doi:10.3762/bjoc.12.41
Graphical Abstract
Figure 1: Representative terpenes.
Figure 2: Two different models showing how energy evolves throughout the course of a reaction: (a) a two-dime...
Figure 3: A depiction of the “snowboarder” analogy for reactions displaying non-statistical dynamic effects. ...
Figure 4: The tetramethylbromonium ion system [14].
Figure 5: The reaction mechanisms of interest in the PES and dynamics studies of Dupuis and co-workers (R = CH...
Figure 6: The portion of the norborn-2-en-7-ylmethyl cation PES examined by Ghigo et al. [60]. Energies reported ...
Figure 7: The transformation of 2-norbornyl cation to 1,3-dimethylcyclopentyl cation.
Figure 8: Carbocation rearrangements for which trajectory calculations were used to estimate lifetimes of sec...
Figure 9: Carbocation rearrangements involved in abietadiene formation.
Figure 10: Carbocation rearrangements involved in miltiradiene formation.
Figure 11: Top: carbocation rearrangements involved in epi-isozizaene formation. Bottom: reaction coordinate d...
Beilstein J. Org. Chem. 2015, 11, 2540–2548, doi:10.3762/bjoc.11.274
Graphical Abstract
Figure 1: The author as a teenager in his school uniform, but on the nearby Myrtleford golf course.
Scheme 1: Chronological progression of Smith group research projects.
Scheme 2: Molecular transporters promote translocation of ions or hydrophilic biomolecules across a synthetic...
Figure 2: (left) Association of ZnDPA probe with phosphatidylserine head group. (middle) False colored fluore...
Scheme 3: Macrocyclic receptor that binds solvent separated ion-pairs.
Scheme 4: Trapping a macrocyclic receptor containing a reactive ion-pair produces an interlocked [2]rotaxane.
Figure 3: (left) General structure of a squaraine rotaxane dye. (right) Fluorescence image of a living mouse ...
Scheme 5: (top) Basis of Synthavidin technology. A fluorescent squaraine dye that is flanked by PEG chains ca...
Figure 4: The author as director of the Notre Dame Integrated Imaging Facility.
Beilstein J. Org. Chem. 2015, 11, 1973–1984, doi:10.3762/bjoc.11.213
Graphical Abstract
Figure 1: (a) Schematic representation of the vicinal σC−H→σ*C−X interaction by double-bond/no-bond resonance...
Figure 2: Schematic representation of stereoelectronic effects (a) hyperconjugation, (b) homohyperconjugation...
Figure 3: Schematic representation of possible homoanomeric interactions in six-membered saturated heterocycl...
Figure 4: Structure of compounds 1 to 8.
Scheme 1: Proposed reaction mechanism for the synthesis of piperidones by the Mannich reaction. The substitue...
Scheme 2: For 6, R1 = R2 = H, for 7, R1 = H, R2 = CH3, for 8, R1 = R2 = CH3.
Figure 5: (a) Favored conformation for compound 1, determined by nOe effect, (b) t-ROESY spectrum of 1 record...
Figure 6: (a) Preferred conformation of 4 determined by nOe, (b) t-ROESY spectrum of 4 recorded at 500 MHz in...
Figure 7: (a) ORTEP diagram of 1. The thermal ellipsoids are drawn at the 30% probability level for all atoms...
Figure 8: (a) ORTEP diagrams of 6 and 7. The thermal ellipsoids are drawn at the 30% probability level for al...
Figure 9: (a) 1JC,H coupling constant of 3, 5, 6, and 8. (b) Plot of the population analysis versus 1JC,H (sl...
Scheme 3: Representation of the nN→σ*C–H(7)eq interaction. The interaction energy is 0.55 kcal/mol at the ωB9...
Figure 10: Distances between N(3) and C(7) for 3, 5, 6, and 7 measured in the structures obtained by XRD.
Beilstein J. Org. Chem. 2015, 11, 363–372, doi:10.3762/bjoc.11.42
Graphical Abstract
Scheme 1: From indigo to heteroindigo derivatives and all-carbon-indigo.
Scheme 2: Attempts to prepare the α-methylene ketones 12 and 13.
Figure 1: a) Both independent molecules of compound 13 in the crystal; ellipsoids represent 50% probability l...
Scheme 3: Dimerization of 13 under McMurry conditions.
Figure 2: a) The molecule of compound 17 in the crystal; ellipsoids represent 50% probability levels. Only th...
Scheme 4: Dimerization of indan-1-one (18) by a stepwise approach.
Scheme 5: Methylenation of 19 and bisalkylation of the product 23 with 1,2-dibromoethane.
Figure 3: The molecule of compound 23 in the crystal. Ellipsoids represent 50% probability levels. Only the a...
Figure 4: a) The molecule of compound 24 in the crystal. Ellipsoids represent 50% probability levels. Only th...
Figure 5: One of the two independent molecules of compound 25 in the crystal. Ellipsoids represent 50% probab...
Scheme 6: Cross-conjugated hydrocarbons by Thiele condensation.
Figure 6: a) The molecule of compound 30 in the crystal. Ellipsoids represent 50% probability levels. Only th...
Beilstein J. Org. Chem. 2015, 11, 242–248, doi:10.3762/bjoc.11.27
Graphical Abstract
Scheme 1: Synthesis of halohydrins and epoxides through β-haloalkoxysulfonium ions generated by the reaction ...
Scheme 2: Proposed reaction mechanisms for the syntheses of bromohydrin 5a-Br and epoxide 6a.
Scheme 3: Mechanistic study using 18O-DMSO.
Beilstein J. Org. Chem. 2015, 11, 92–146, doi:10.3762/bjoc.11.13
Graphical Abstract
Scheme 1: Cross-dehydrogenative coupling.
Scheme 2: Cross-dehydrogenative C–O coupling.
Scheme 3: Regioselective ortho-acetoxylation of meta-substituted arylpyridines and N-arylamides.
Scheme 4: ortho-Acyloxylation and alkoxylation of arenes directed by pyrimidine, benzoxazole, benzimidazole a...
Scheme 5: Cu(OAc)2/AgOTf/O2 oxidative system in the ortho-alkoxylation of arenes.
Scheme 6: Pd(OAc)2/persulfate oxidative system in the ortho-alkoxylation and acetoxylation of arenes with nit...
Scheme 7: ortho-Acetoxylation and methoxylation of O-methyl aryl oximes, N-phenylpyrrolidin-2-one, and (3-ben...
Scheme 8: Ruthenium-catalyzed ortho-acyloxylation of acetanilides.
Scheme 9: Acetoxylation and alkoxylation of arenes with amide directing group using Pd(OAc)2/PhI(OAc)2 oxidat...
Scheme 10: Alkoxylation of azoarenes, 2-aryloxypyridines, picolinamides, and N-(1-methyl-1-(pyridin-2-yl)ethyl...
Scheme 11: Acetoxylation of compounds containing picolinamide and quinoline-8-amine moieties using the Pd(OAc)2...
Scheme 12: (CuOH)2CO3 catalyzed oxidative ortho-etherification using air as oxidant.
Scheme 13: Copper-catalyzed aerobic alkoxylation and aryloxylation of arenes containing pyridine-N-oxide moiet...
Scheme 14: Cobalt-catalyzed aerobic alkoxylation of arenes and alkenes containing pyridine N-oxide moiety.
Scheme 15: Non-symmetric double-fold C–H ortho-acyloxylation.
Scheme 16: N-nitroso directed ortho-alkoxylation of arenes.
Scheme 17: Selective alkoxylation and acetoxylation of alkyl groups.
Scheme 18: Acetoxylation of 2-alkylpyridines and related compounds.
Scheme 19: Acyloxylation and alkoxylation of alkyl fragments of substrates containing amide or sulfoximine dir...
Scheme 20: Palladium-catalyzed double sp3 C–H alkoxylation of N-(quinolin-8-yl)amides for the synthesis of sym...
Scheme 21: Copper-catalyzed acyloxylation of methyl groups of N-(quinolin-8-yl)amides.
Scheme 22: One-pot acylation and sp3 C–H acetoxylation of oximes.
Scheme 23: Possible mechanism of oxidative esterification catalyzed by N-heterocyclic nucleophilic carbene.
Scheme 24: Oxidative esterification employing stoichiometric amounts of aldehydes and alcohols.
Scheme 25: Selective oxidative coupling of aldehydes with alcohols in the presence of amines.
Scheme 26: Iodine mediated oxidative esterification.
Scheme 27: Oxidative C–O coupling of benzyl alcohols with methylarenes under the action of Bu4NI/t-BuOOH syste...
Scheme 28: Oxidative coupling of methyl- and ethylarenes with aromatic aldehydes under the action of Bu4NI/t-B...
Scheme 29: Cross-dehydrogenative C–O coupling of aldehydes with t-BuOOH in the presence of Bu4NI.
Scheme 30: Bu4NI-catalyzed α-acyloxylation reaction of ethers and ketones with aldehydes and t-BuOOH.
Scheme 31: Oxidative coupling of aldehydes with N-hydroxyimides and hexafluoroisopropanol.
Scheme 32: Oxidative coupling of alcohols with N-hydroxyimides.
Scheme 33: Oxidative coupling of aldehydes and primary alcohols with N-hydroxyimides using (diacetoxyiodo)benz...
Scheme 34: Proposed mechanism of the oxidative coupling of aldehydes and N-hydroxysuccinimide under action of ...
Scheme 35: Oxidative coupling of aldehydes with pivalic acid (172).
Scheme 36: Oxidative C–O coupling of aldehydes with alkylarenes using the Cu(OAc)2/t-BuOOH system.
Scheme 37: Copper-catalyzed acyloxylation of C(sp3)-H bond adjacent to oxygen in ethers using benzyl alcohols.
Scheme 38: Oxidative C–O coupling of aromatic aldehydes with cycloalkanes.
Scheme 39: Ruthenium catalyzed cross-dehydrogenative coupling of primary and secondary alcohols.
Scheme 40: Cross-dehydrogenative C–O coupling reactions of β-dicarbonyl compounds with sulfonic acids, acetic ...
Scheme 41: Acyloxylation of ketones, aldehydes and β-dicarbonyl compounds using carboxylic acids and Bu4NI/t-B...
Scheme 42: Acyloxylation of ketones using Bu4NI/t-BuOOH system.
Scheme 43: Cross-dehydrogenative C–O coupling of β-dicarbonyl compounds and their heteroanalogues with N-hydro...
Scheme 44: Cross-dehydrogenative C–O coupling of β-dicarbonyl compounds and their heteroanalogues with t-BuOOH....
Scheme 45: Oxidative C–O coupling of 2,6-dialkylphenyl-β-keto esters and thioesters with tert-butyl hydroxycar...
Scheme 46: α’-Acyloxylation of α,β-unsaturated ketones using KMnO4.
Scheme 47: Possible mechanisms of the acetoxylation at the allylic position of alkenes by Pd(OAc)2.
Scheme 48: Products of the oxidation of terminal alkenes by Pd(II)/AcOH/oxidant system.
Scheme 49: Acyloxylation of terminal alkenes with carboxylic acids.
Scheme 50: Synthesis of linear E-allyl esters by cross-dehydrogenative coupling of terminal alkenes wih carbox...
Scheme 51: Pd(OAc)2-catalyzed acetoxylation of Z-vinyl(triethylsilanes).
Scheme 52: α’-Acetoxylation of α-acetoxyalkenes with copper(II) chloride in acetic acid.
Scheme 53: Oxidative acyloxylation at the allylic position of alkenes and at the benzylic position of alkylare...
Scheme 54: Copper-catalyzed alkoxylation of methylheterocyclic compounds using di-tert-butylperoxide as oxidan...
Scheme 55: Oxidative C–O coupling of methylarenes with β-dicarbonyl compounds or phenols.
Scheme 56: Copper-catalyzed esterification of methylbenzenes with cyclic ethers and cycloalkanes.
Scheme 57: Oxidative C–O coupling of carboxylic acids with toluene catalyzed by Pd(OAc)2.
Scheme 58: Oxidative acyloxylation at the allylic position of alkenes with carboxylic acids using the Bu4NI/t-...
Scheme 59: Cross-dehydrogenative C–O coupling of carboxylic acids with alkylarenes using the Bu4NI/t-BuOOH sys...
Scheme 60: Oxidative C–O cross-coupling of methylarenes with ethyl or isopropylarenes.
Scheme 61: Phosphorylation of benzyl C–H bonds using the Bu4NI/t-BuOOH oxidative system.
Scheme 62: Selective C–H acetoxylation of 2,3-disubstituted indoles.
Scheme 63: Acetoxylation of benzylic position of alkylarenes using DDQ as oxidant.
Scheme 64: C–H acyloxylation of diarylmethanes, 3-phenyl-2-propen-1-yl acetate and dimethoxyarene using DDQ.
Scheme 65: Cross-dehydrogenative C–O coupling of 1,3-diarylpropylenes and 1,3-diarylpropynes with alcohols.
Scheme 66: One-pot azidation and C–H acyloxylation of 3-chloro-1-arylpropynes.
Scheme 67: Cross-dehydrogenative C–O coupling of 1,3-diarylpropylenes, (E)-1-phenyl-2-isopropylethylene and is...
Scheme 68: Cross-dehydrogenative C–O coupling of alkylarenes and related compounds with N-hydroxyphthalimide.
Scheme 69: Acetoxylation at the benzylic position of alkylarenes mediated by N-hydroxyphthalimide.
Scheme 70: C–O coupling of methylarenes with aromatic carboxylic acids employing the NaBrO3/NaHSO3 system.
Scheme 71: tert-Butyl peroxidation of allyl, propargyl and benzyl ethers catalyzed by Fe(acac)3.
Scheme 72: Cross-dehydrogenative C–O coupling of ethers with carboxylic acids mediated by Bu4NI/t-BuOOH system....
Scheme 73: Oxidative acyloxylation of dimethylamides and dioxane with 2-aryl-2-oxoacetic acids accompanied by ...
Scheme 74: tert-Butyl peroxidation of N-benzylamides and N-allylbenzamide using the Bu4NI/t-BuOOH system.
Scheme 75: Cross-dehydrogenative C–O coupling of aromatic carboxylic acids with ethers using Fe(acac)3 as cata...
Scheme 76: Cross-dehydrogenative C–O coupling of cyclic ethers with 2-hydroxybenzaldehydes using iron carbonyl...
Scheme 77: Cross-dehydrogenative C–O coupling of ethers with β-dicarbonyl compounds and phenols using copper c...
Scheme 78: Cross-dehydrogenative C–O coupling of 2-hydroxybenzaldehyde with dioxane catalyzed by Cu2(BPDC)2(BP...
Scheme 79: Ruthenium chloride-catalyzed acyloxylation of β-lactams.
Scheme 80: Ruthenium-catalyzed tert-butyl peroxydation amides and acetoxylation of β-lactams.
Scheme 81: PhI(OAc)2-mediated α,β-diacetoxylation of tertiary amines.
Scheme 82: Electrochemical oxidative methoxylation of tertiary amines.
Scheme 83: Cross-dehydrogenative C–O coupling of ketene dithioacetals with carboxylic acids in the presence of...
Scheme 84: Cross-dehydrogenative C–O coupling of enamides with carboxylic acids using iodosobenzene as oxidant....
Scheme 85: Oxidative alkoxylation, acetoxylation, and tosyloxylation of acylanilides using PhI(O(O)CCF3)2 in t...
Scheme 86: Proposed mechanism of the oxidative C–O coupling of actetanilide with O-nucleophiles in the presenc...
Scheme 87: Three-component coupling of aldehydes, anilines and alcohols involving oxidative intermolecular C–O...
Scheme 88: Oxidative coupling of phenols with alcohols.
Scheme 89: 2-Acyloxylation of quinoline N-oxides with arylaldehydes in the presence of the CuOTf/t-BuOOH syste...
Scheme 90: Cross-dehydrogenative C–O coupling of azoles with primary alcohols.
Scheme 91: Oxidation of dipyrroles to dipyrrins and subsequent oxidative alkoxylation in the presence of Na3Co...
Scheme 92: Oxidative dehydrogenative carboxylation of alkanes and cycloalkanes to allylic esters.
Scheme 93: Pd-catalyzed acetoxylation of benzene.
Beilstein J. Org. Chem. 2014, 10, 3056–3072, doi:10.3762/bjoc.10.323
Graphical Abstract
Scheme 1: Application of anodic oxidation to the generation of new carbon-carbon bonds [11].
Scheme 2: The influence of the amino protecting group on the “kinetic” and “thermodynamic” anodic methoxylati...
Scheme 3: Example of the application of the cation pool method [17].
Scheme 4: A thiophenyl electroauxiliary allows for regioselective anodic oxidation [32].
Scheme 5: A diastereoselective cation carbohydroxylation reaction and postulated intermediate 18 [18].
Scheme 6: A radical addition and electron transfer reaction of N-acyliminium ions generated electrosynthetica...
Scheme 7: Catalytic indirect anodic fluorodesulfurization reaction [37].
Figure 1: Schematic of a cation flow system and also shown is the electrochemical microflow reactor reported ...
Figure 2: Example of a parallel laminar flow set-up. Figure redrawn from reference [38].
Figure 3: A catch and release cation pool method [42].
Scheme 8: Micromixing effects on yield 92% vs 36% and ratio of alkylation products [43].
Figure 4: Schematic illustration of the anodic substitution reaction system using acoustic emulsification. Fi...
Scheme 9: Electrooxidation to prepare a chiral oxidation mediator and application to the kinetic resolution o...
Scheme 10: Electrooxidation reactions on 4-membered ring systems [68].
Figure 5: Example of a chiral auxiliary Shono-oxidation intermediate [69].
Scheme 11: An electrochemical multicomponent reaction where a carbon felt anode and platinum cathode were util...
Scheme 12: Preparation of dienes using the Shono oxidation [23].
Scheme 13: Combination of an electroauxiliary mediated anodic oxidation and RCM to afford spirocyclic compound...
Scheme 14: Total synthesis of (+)-myrtine (66) using an electrochemical approach [78].
Scheme 15: Total synthesis of (−)-A58365A (70) and (±)-A58365B (71) [79].
Scheme 16: Anodic oxidation used in the preparation of the poison frog alkaloid 195C [80].
Scheme 17: Preparation of iminosugars using an electrochemical approach [81].
Scheme 18: The electrosynthetic preparation of α-L-fucosidase inhibitors [84,85].
Scheme 19: Enantioselective synthesis of the anaesthetic ropivacaine 85 [71].
Scheme 20: The preparation of synthetically challenging aza-nucleosides employing an electrochemical step [88].
Scheme 21: Synthesis of a bridged tricyclic diproline analogue 93 that induces α-helix conformation into linea...
Scheme 22: Synthesis of (i) a peptidomimetic and (ii) a functionalised peptide from silyl electroauxiliary pre...
Scheme 23: Examples of Phe7–Phe8 mimics prepared using an electrochemical approach [93].
Scheme 24: Preparation of arginine mimics employing an electrooxidation step [96].
Scheme 25: Preparation of chiral cyclic amino acids [20].
Scheme 26: Two-step preparation of Nazlinine 117 using Shono flow electrochemistry [101].
Beilstein J. Org. Chem. 2014, 10, 1197–1212, doi:10.3762/bjoc.10.118
Graphical Abstract
Scheme 1: Formation of a dipeptide 3. Reaction of the amino group of amino acid 2 with the carboxylic acid mo...
Scheme 2: Peptide assembly by SPPS, exemplarily shown for a tetrapeptide. First, the C-terminal amino acid is...
Figure 1: Five issues that have to be resolved prior to peptide synthesis.
Scheme 3: Fmoc/t-Bu (A) and Boc/Bn (B) protecting-group strategies applied in SPPS. (A) The Fmoc-group is rem...
Figure 2: Commonly applied amino acid side chain protecting groups (SPG) in Fmoc/t-Bu-strategy. Trt: trityl, ...
Figure 3: Selected coupling reagents for SPPS.
Figure 4: Spectrum of methods for solid phase-synthesized peptides. AA: amino acid, SAR: structure–activity r...
Figure 5: Compounds that can be introduced into pNPY (porcine neuropeptide Y) or hPP (human pancreatic polype...
Beilstein J. Org. Chem. 2013, 9, 476–485, doi:10.3762/bjoc.9.51
Graphical Abstract
Scheme 1: A general scheme of the Prins reaction.
Scheme 2: An example of the Prins reaction [4]. The product yields (%) are based on formaldehyde.
Scheme 3: An equilibrium in the hydrolysis of the product, 1,3-dioxane.
Scheme 4: Formation of the acetate of an allylic alcohol by Prins reaction [5].
Scheme 5: A reaction mechanism involving the carbonium-ion intermediate X.
Scheme 6: A reaction model composed of RHC=CH2, (H2C=O)2 and H3O+(H2O)13 to obtain the path of step 2 (Scheme 5). H3O+...
Figure 1: Geometries of the precursor and the transition states (TSs) of the Prins reaction of propene with (...
Figure 2: Energy changes (in kcal/mol) of the propene Prins reaction calculated by B3LYP/6-311+G(d,p) SCRF=(P...
Figure 3: Geometries of the transition states (TSs) of the Prins reaction of styrene + (formaldehyde)2 + H3O+...
Figure 4: Energy changes (in kcal/mol) of the styrene Prins reaction calculated by B3LYP/6-311+G(d,p) SCRF = ...
Figure 5: TS1(Ph) geometries of n = 20 and n = 30 in the reacting system of styrene + H3O+(H2O)n + (H2C=O)2 c...
Scheme 7: Summary of the present calculated results. The ether in the box is the new intermediate found in th...
Beilstein J. Org. Chem. 2013, 9, 323–331, doi:10.3762/bjoc.9.37
Graphical Abstract
Figure 1: Caryol-1(11)-en-10-ol (1) and similar sesquiterpenoids. Note that a different atom numbering was us...
Scheme 1: Initially proposed mechanism for caryolene (caryol-1(11)-en-10-ol, 1) formation. Atom numbers for f...
Figure 2: Computed (top) and experimental (bottom, underlined italics) [2] 1H and 13C chemical shifts for 1 (low...
Figure 3: Computed minima and transition-state structure involved in the single-step conversion of A to C. Re...
Figure 4: IRC from TS-AC toward C. Relative energies were calculated at the B3LYP/6-31+G(d,p) level.
Scheme 2: Alternative mechanisms for caryolene formation.
Figure 5: Computed pathway for the conversion of C to E. Relative energies shown (kcal/mol) were calculated a...
Figure 6: IRC from TS-GE toward E. Relative energies were calculated at the B3LYP/6-31+G(d,p) level. Selected...
Figure 7: Computed pathway for the conversion of C to E in the presence of ammonia. Relative energies shown (...
Figure 8: Predicted energetics for the conversion of A to E in the absence (blue) and presence (auburn) of am...
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1458–1478, doi:10.3762/bjoc.8.166
Graphical Abstract
Figure 1: Second-order rate constants for reactions of electrophiles with nucleophiles.
Figure 2: Mechanism of amine-catalyzed conjugate additions of nucleophiles [23-28].
Figure 3: Kinetics of the reactions of the iminium ion 3a with the silylated ketene acetal 7a [35].
Figure 4: Laser flash photolytic generation of iminium ions 3a.
Figure 5: Correlations of the reactivities of the iminium ions 3a and 3b toward nucleophiles with the corresp...
Figure 6: Comparison of the electrophilicities of cinnamaldehyde-derived iminium ions 3a–3i.
Figure 7: Nucleophiles used in iminium activated reactions [35,42,44-52].
Figure 8: Counterion effects in electrophilic reactions of iminium ions 3a-X (at 20 °C, silyl ketene acetal 7b...
Figure 9: Comparison of calculated and experimental rate constants of electrophilic aromatic substitutions wi...
Figure 10: Aza-Michael additions of the imidazoles 15 with the iminium ion 3a [58].
Figure 11: Plots of log k2 for the reactions of enamides 17a–17e with the benzhydrylium ions 18a–d in CH3CN at...
Figure 12: Comparison of the nucleophilicities of enamides 17 with those of several other C nucleophiles (solv...
Figure 13: Experimental and calculated rate constants k2 for the reactions of 17b and 17g with 3a and 3b in th...
Figure 14: Comparison between experimental and calculated (Equation 1) cyclopropanation rate constants [64].
Figure 15: Electrostatic activation of iminium activated cyclopropanations with sulfur ylides.
Figure 16: Sulfur ylides inhibit the formation of iminium ions.
Figure 17: Enamine activation [65].
Figure 18: Electrophilicity parameters E for classes of compounds that have been used as electrophilic substra...
Figure 19: Quantification of the nucleophilic reactivities of the enamines 32a–e in acetonitrile (20 °C) [83]; a d...
Figure 20: Proposed transition states for the stereogenic step in proline-catalyzed reactions.
Figure 21: Kinetic evidence for the anchimeric assistance of the electrophilic attack by the carboxylate group....
Figure 22: Differentiation of nucleophilicity and Lewis basicity (in acetonitrile at 20 °C): Rate (left) and e...
Figure 23: NHCs 41, 42, and 43 are moderately active nucleophiles and exceptionally strong Lewis bases (methyl...
Figure 24: Nucleophilic reactivities of the deoxy Breslow intermediates 45 in THF at 20 °C [107].
Figure 25: Comparison of the proton affinities (PA, from [107]) of the diaminoethylenes 47a–c with the methyl catio...
Figure 26: Berkessel’s synthesis of a Breslow intermediate (51, keto tautomer) from carbene 43 [112].
Figure 27: Synthesis of O-methylated Breslow intermediates [114].
Figure 28: Relative reactivities of deoxy- and O-methylated Breslow intermediates [114].
Figure 29: Reactivity scales for electrophiles and nucleophiles relevant for organocatalytic reactions (refere...
Beilstein J. Org. Chem. 2012, 8, 1406–1442, doi:10.3762/bjoc.8.163
Graphical Abstract
Scheme 1: Reactions for the methyl cation affinity (MCA) of a neutral Lewis base (1a), an anionic Lewis base ...
Figure 1: MCA values of monosubstituted amines of general formula Me2N(CH2)nH (n = 1–7, in kJ/mol).
Scheme 2: Systematic dependence of MCA.
Scheme 3: Trends in amine MCA values.
Figure 2: Eclipsing interactions in the best conformation of N+Me(iPr)3 (16Me) (left), and the corresponding ...
Scheme 4: General expression for the chain-length dependence of MCA values.
Figure 3: MCA values of monosubstituted phosphanes of general formula Me2P(CH2)nH (n = 1–8, in kJ/mol).
Figure 4: MCA values of monosubstituted phosphanes of general formula PMe2(CH(CH2)n+1) (n = 1–8, in kJ/mol).
Figure 5: The MCA values of n-butyldiphenylphosphane (102) and its (αα-/ββ-/γγ-) dimethylated analogues.
Figure 6: MCA values of phosphanes Me2P–NR2 with cyclic and acyclic amine substituents.
Figure 7: MCA values of phosphanes PMe2R connected to α,α- and β,β-position of nitrogen containing cyclic sub...
Scheme 5: Reactions for the benzhydryl cation affinity (BHCA) of a Lewis base (5a) and pyridine (5b).
Figure 8: Comparison of BHCA values (kJ/mol) and nucleophilicity parameters N for sterically unbiased pyridin...
Scheme 6: Reactions for the trityl cation affinity (THCA) of a Lewis base (6a) and pyridine (6b).
Figure 9: Comparison of MCA, BHCA, and TCA values of selected Lewis bases.
Scheme 7: Correlations of BHCA/TCA values with the respective MCA data for sterically unbiased systems (exclu...
Figure 10: Scheme for the angle d(RXRR) measurements.
Scheme 8: Reactions for the Mosher's cation affinity (MOSCA) of a Lewis base.
Scheme 9: Reactions for the acetyl cation affinity (ACA) of a Lewis base (9a) and pyridine (9b).
Figure 11: Structure of the acetylated pyridine 380 (380Ac).
Scheme 10: Reaction for the Michael-acceptor affinity (MAA) of a Lewis base.
Figure 12: Inverted reaction free energies for the addition of N- and P-based Lewis bases to three different M...
Figure 13: Correlation between MCA values and affinity values towards three different Michael acceptors.
Scheme 11: (a) General definition for a methyl cation transfer reaction between Lewis bases LB1 and LB2, and (...
Figure 14: The energetically best conformations of Pn-Bu3 (120_1, top) and (120_2, bottom).
Figure 15: Relative order of the conformations 120_1 to 120_7 depending on the level of theory.
Figure 16: The structure of the energetically best conformations of 120Me.
Beilstein J. Org. Chem. 2011, 7, 1108–1114, doi:10.3762/bjoc.7.127
Graphical Abstract
Scheme 1: Electrochemically generated N-acyliminium ions 1 and subsequent reactions.
Figure 1: Electrochemical microreactor.
Scheme 2: Electrolysis of furan.
Scheme 3: Kolbe electrolysis of phenylacetic acids 6 in flow.
Scheme 4: Synthesis of diaryliodonium salts 11 in flow.
Beilstein J. Org. Chem. 2011, 7, 767–780, doi:10.3762/bjoc.7.87
Graphical Abstract
Scheme 1: Transition metal promoted rearrangements of bicyclo[1.1.0]butanes.
Scheme 2: Gold-catalyzed rearrangements of strained rings.
Scheme 3: Gold-catalyzed ring expansions of cyclopropanols and cyclobutanols.
Scheme 4: Mechanism of the cycloisomerization of alkynyl cyclopropanols and cyclobutanols.
Scheme 5: Proposed mechanism for the Au-catalyzed isomerization of alkynyl cyclobutanols.
Scheme 6: Gold-catalyzed cycloisomerization of 1-allenylcyclopropanols.
Scheme 7: Gold-catalyzed cycloisomerization of cyclopropylmethanols.
Scheme 8: Gold-catalyzed cycloisomerization of aryl alkyl epoxides.
Scheme 9: Gold-catalyzed synthesis of furans.
Scheme 10: Transformations of alkynyl oxiranes.
Scheme 11: Transformations of alkynyl oxiranes into ketals.
Scheme 12: Gold-catalyzed cycloisomerization of cyclopropyl alkynes.
Scheme 13: Gold-catalyzed synthesis of substituted furans.
Scheme 14: Proposed mechanism for the isomerization of alkynyl cyclopropyl ketones.
Scheme 15: Cycloisomerization of cyclobutylazides.
Scheme 16: Cycloisomerization of alkynyl aziridines.
Scheme 17: Gold-catalyzed synthesis of disubstituted cyclohexadienes.
Scheme 18: Gold-catalyzed synthesis of indenes.
Scheme 19: Gold-catalyzed [n + m] annulation processes.
Scheme 20: Gold-catalyzed generation of 1,4-dipoles.
Scheme 21: Gold-catalyzed synthesis of repraesentin F.
Scheme 22: Gold-catalyzed ring expansion of cyclopropyl 1,6-enynes.
Scheme 23: Gold-catalyzed synthesis of ventricos-7(13)-ene.
Scheme 24: 1,2- vs 1,3-Carboxylate migration.
Scheme 25: Gold-catalyzed cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 26: Proposed mechanism for the cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 27: Gold-catalyzed 1,2-acyloxy rearrangement/cyclopropanation/cycloisomerization cascades.
Scheme 28: Formal total synthesis of frondosin A.
Scheme 29: Gold-catalyzed rearrangement/cycloisomerization of cyclopropyl propargyl acetates.
Beilstein J. Org. Chem. 2011, 7, 717–734, doi:10.3762/bjoc.7.82
Graphical Abstract
Scheme 1: General reactivity of cyclopropenes in the presence of gold catalysts.
Scheme 2: Cationic organogold species generated from cyclopropenone acetals.
Scheme 3: Rotation barriers around the C2–C3 bond (M06 DFT calculations).
Scheme 4: Au–C1 bond length in organogold species of type D.
Scheme 5: Gold-catalyzed addition of alcohols or water to cyclopropene 8.
Scheme 6: Gold-catalyzed addition of alcohols to cyclopropene 10.
Scheme 7: Mechanism of the gold-catalyzed addition of alcohols to cyclopropenes.
Scheme 8: Synthesis of tert-allylic ethers from cyclopropenes and allenes.
Scheme 9: Oxidation of the intermediate gold–carbene with diphenylsulfoxide.
Scheme 10: Gold, copper and Lewis acid-catalyzed reactions of cyclopropene 18.
Scheme 11: Mechanism of the Lewis acid-catalyzed reactions of cyclopropene 18.
Scheme 12: Gold-catalyzed rearrangement of vinylcyclopropenes 25.
Scheme 13: Gold-catalyzed rearrangement of cyclopropenes 27 to indenes 28.
Scheme 14: Gold-catalyzed rearrangement of cyclopropenes 29 to indenes 30.
Scheme 15: Gold-catalyzed rearrangement of cyclopropenyl ester 34a.
Scheme 16: Gold-catalyzed reactions of cyclopropenyl esters 34b–34d.
Scheme 17: Gold-catalyzed reactions of cyclopropenylsilane 34e.
Scheme 18: Gold-catalyzed rearrangement of cyclopropenylmethyl acetates.
Scheme 19: Mechanism of the gold-catalyzed rearrangement of cyclopropenes 39.
Scheme 20: Gold-catalyzed cyclopropanation of styrene with cyclopropene 8.
Scheme 21: Representative reactions of carbene precursors on gold metal.
Scheme 22: Intermolecular olefin cyclopropanation with gold carbenes generated from cyclopropenes.
Scheme 23: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 24: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 25: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 26: Gold-catalyzed cycloisomerization of cyclopropene-ene 59.
Scheme 27: Gold-catalyzed cycloisomerization of substituted allyl cyclopropenyl carbinyl ethers 62a–62f.
Scheme 28: Gold-catalyzed cycloisomerization of cyclopropene-enes.
Scheme 29: Gold-catalyzed cycloisomerization of cyclopropene-ynes.
Scheme 30: Formation of products arising from a double cleavage process in the gold-catalyzed cycloisomerizati...
Scheme 31: Gold-catalyzed cycloisomerization of cyclopropene-ynes involving a double cleavage process.
Scheme 32: Gold-catalyzed reaction of cyclopropene-ynes, cyclopropene-enes and cyclopropene-allenes.
Beilstein J. Org. Chem. 2011, 7, 346–363, doi:10.3762/bjoc.7.45
Graphical Abstract
Scheme 1: Superelectrophilic activation of the acetyl cation.
Scheme 2: Ring opening of diprotonated 2-oxazolines.
Scheme 3: AlCl3-promoted ring opening of isoxaolidine 16.
Scheme 4: Ring-opening reactions of cyclopropyl derivatives.
Scheme 5: Condensations of ninhydrin (28) with benzene.
Scheme 6: Rearrangement of 29 to 30.
Scheme 7: Superacid promoted ring opening of succinic anhydride (33).
Scheme 8: Reaction of phthalic acid (36) in FSO3H-SbF5.
Scheme 9: Ring expansion of superelectrophile 42.
Scheme 10: Reaction of camphor (44) in superacid.
Scheme 11: Isomerization of 2-cyclohexen-1-one (48).
Scheme 12: Isomerization of 2-decalone (51).
Scheme 13: Rearrangement of the acyl-dication 58.
Scheme 14: Reaction of dialkylketone 64.
Scheme 15: Ozonolysis in superacid.
Scheme 16: Rearrangement of 1-hydroxy-2-methylcyclohexane carboxylic acid (79) in superacid.
Scheme 17: Isomerization of the 1,5-manxyl dication 87.
Scheme 18: Energetics of isomerization.
Scheme 19: Rearrangement of dication 90.
Scheme 20: Superacid promoted rearrangement of pivaldehyde (92).
Scheme 21: Rearrangement of a superelectrophilic carboxonium ion 100.
Scheme 22: Proposed mechanism for the Wallach rearrangement.
Scheme 23: Wallach rearrangement of azoxypyridines 108 and 109.
Scheme 24: Proposed mechanism of the benzidine rearrangement.
Scheme 25: Superacid-promoted reaction of quinine (122).
Scheme 26: Superacid-promoted reaction of vindoline derivative 130.
Scheme 27: Charge migration by hydride shift and acid–base chemistry.
Scheme 28: Reactions of 1-hydroxycyclohexanecarboxylic acid (137).
Scheme 29: Reaction of alcohol 143 with benzene in superacid.
Scheme 30: Reaction of alcohol 148 in superacid with benzene.
Scheme 31: Mechanism of aza-polycyclic aromatic compound formation.
Scheme 32: Superacid-promoted reaction of ethylene glycol (159).
Scheme 33: Reactions of 1,3-propanediol (165) and 2-methoxyethanol (169).
Scheme 34: Rearrangement of superelelctrophilic acyl dication 173.
Beilstein J. Org. Chem. 2010, 6, 1035–1042, doi:10.3762/bjoc.6.118
Graphical Abstract
Scheme 1: Mechanism of dehydration of benzene-1,2-dihydrodiol.
Figure 1: Reactivity ratios for acid-catalyzed reaction of arene dihydrodiols.
Figure 2: Substrates for solvolysis measurements.
Scheme 2: Products of solvolysis and (ester) hydrolysis of trans-1-trichloroacetoxy-2-methoxy-1,2-dihydronaph...
Scheme 3: Products of solvolysis of trans-1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalene.
Figure 3: Rate constants for aqueous solvolyses.
Figure 4: Cis/trans reactivity ratios for β-hydroxycarbocation forming reactions.
Figure 5: Comparison of the effect of a β-hydroxy group on the reactivity of cis and trans di- and tetrahdron...
Scheme 4: ‘Aromatic’ hyperconjugation for the benzenium ion.
Scheme 5: Stereochemistry of carbocation formation from solvolysis of cis-1-trichloroacetoxy-2-hydroxy-1,2-di...
Beilstein J. Org. Chem. 2010, 6, No. 41, doi:10.3762/bjoc.6.41
Graphical Abstract
Scheme 1: The C–F bond forming Prins reaction leading to 4-fluoropyrans [10].
Figure 1: X-ray crystal structure of syn-5a.
Scheme 2: Ring opening hydrogenation of an oxa-Prins product.
Figure 2: X-ray crystal structure of the major bicyclic tetrahydropyran diastereoisomer 9b.
Scheme 3: Reaction using (E)-11a and (Z)-11b hex-3-en-1-ols with 4-nitrobenzaldehyde to generate 4-fluorotetr...
Figure 3: X-ray crystal structure of the minor anti-piperidine product 14d.