Search results

Search for "nickel catalysis" in Full Text gives 17 result(s) in Beilstein Journal of Organic Chemistry.

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • addition) more temperature dependent. However, in the case of nickel catalysis, during AHA coupling, a suitable ligand, such as bipyridine, is needed for the in situ formation of a metal complex that activates the C–H and C–X bond [67]. The solvents used most in the AHA coupling are CH3CN [62][65][66][67
PDF
Album
Review
Published 13 Mar 2025

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • using tertiary alkyl oxalates and aryl bromides (Scheme 10). This is achieved through the synergistic combination of photoredox and nickel catalysis. This approach facilitates the formation of diverse trisubstituted olefins with outstanding regioselectivity and syn-stereoselectivity. The proposed
  • xanthate esters with aryl bromides via dual photoredox and nickel catalysis (Scheme 14). sec-BuBF3K was found to be the best radical precursor for generating the alkyl radicals that initiated the C–O bond cleavage of O-benzyl xanthate esters to provide benzyl radicals. Next, the benzyl radicals underwent
  • with aryl halides via dual photoredox and nickel catalysis. Deoxygenative borylation of secondary alcohol. Deoxygenative alkyl radical generation from alcohols under visible-light photoredox conditions. Deoxygenative alkylation via alkoxy radicals against hydrogenation or β-fragmentation. Direct C–O
PDF
Album
Review
Published 14 Jun 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • time, Wu and co-workers contributed to the introduction of two new syntheses of N-aroylindole derivatives by means of nickel catalysis. In 2021, they reported a nickel-catalyzed carbonylative cyclization of 2-nitroalkynes and aryl iodides with Co2(CO)8 as the CO source. The reaction was performed in
PDF
Album
Review
Published 30 Apr 2024

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • trifluoromethyl alkyl acyloins in good yields with broad substrate compatibility. The complex bioactive molecules were also compatible with this catalytic system to afford the corresponding products. Keywords: alkyl carboxylic acids; cross coupling; EDA complex; nickel catalysis; trifluoromethyl acyloins
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • ‒C) and carbon–heteroatom bonds for the construction of complex organic molecules by nickel catalysis significantly improved the atom-, step-, and resource economy by avoiding the substrate prefunctionalizations (Scheme 1) [26][27][28][29][30]. The nickel-catalyzed oxidative C‒H functionalization
  • , MacMillan and co-workers demonstrated an inspiring C(sp3)‒H arylation of dimethylaniline (1a) with a variety of aryl halides using the photoredox nickel catalysis [53]. Here, the combination of the iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 and the commercially available nickel catalyst NiCl2·glyme
  • transfer (HAT) and nickel catalysis [54]. The catalytic system consisting of iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, nickel catalyst NiBr2·3H2O, ligand 4,7-dimethoxy-1,10-phenanthroline (4,7-dOMe-phen), and 3-acetoxyquinuclidine was found to be optimal to afford the desired α-amino C–C coupled
PDF
Album
Review
Published 31 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • C, which undergoes an oxidation process to generate carbocation D. A proton abstraction from D then affords the observed product. Cross-coupling reaction between unactivated olefins and alkyl halides under nickel catalysis The use of alkyl halides in transition-metal-catalyzed cross-couplings to
  • ]. Nickel catalysis is a viable alternative for this kind of cross-coupling reactions due to its particular radical mechanism, instead of the common metal-oxidative addition to organohalides [102][103][104]. Examples of the coupling between primary, secondary, and even tertiary alkyl halides with
  • olefins 84 as nucleophile partners and racemic secondary and tertiary α-bromo-N-protected β-lactams 83 under nickel catalysis, along with the chiral bis(oxazoline) ligand 85 and triethoxysilane (Scheme 32) [108]. Substrate structural variations on 84 had only a small impact on the reaction
PDF
Album
Review
Published 07 Jul 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • electrocatalysis, have been achieved recently [53][54][55][56][57][58]. In addition, various transformations merging photoredox catalysis with transition-metal catalysis have been disclosed [59][60][61][62][63][64][65]. Among these different strategies, visible-light photoredox catalysis combined with nickel
  • catalysis is undoubtedly the most thoroughly investigated approach and consequently, the most widely described in the literature [66][67]. The interest of the scientific community towards this dual catalysis and further developments were pioneered by MacMillan [68] and Molander [69]. The general mechanism
PDF
Album
Review
Published 21 Jul 2020

Photocatalytic deaminative benzylation and alkylation of tetrahydroisoquinolines with N-alkylpyrydinium salts

  • David Schönbauer,
  • Carlo Sambiagio,
  • Timothy Noël and
  • Michael Schnürch

Beilstein J. Org. Chem. 2020, 16, 809–817, doi:10.3762/bjoc.16.74

Graphical Abstract
  • , electrophilic alkyl radicals were used in several transformations, such as electrophilic cross couplings under nickel catalysis, either with boronic acids [35] or different (aryl)halides [36][37][38]. Furthermore, visible light-promoted uncatalyzed electron transfer via the formation of electron donor–acceptor
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2020

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • alcohols and asymmetric sulfide oxidation [91]. Diverse reactivity, cost efficiency and variable oxidation state [Ni(0)–Ni(IV)] associated with nickel led to remarkable developments in the field of catalytic applications [68]. Nickel catalysis involved cycloaddition, cyclization, C–H bond functionalization
PDF
Album
Review
Published 19 Jul 2019

Continuous-flow retro-Diels–Alder reaction: an efficient method for the preparation of pyrimidinone derivatives

  • Imane Nekkaa,
  • Márta Palkó,
  • István M. Mándity and
  • Ferenc Fülöp

Beilstein J. Org. Chem. 2018, 14, 318–324, doi:10.3762/bjoc.14.20

Graphical Abstract
  • the literature, a similar desulfurisation batch reaction was performed with nickel catalysis, in ethanol (EtOH)/water (2:1) solution [55][56][57]. Thus, thioxo derivative 8b was dissolved in this mixture, and the CF method was repeated. Desulfurisation of 8b, at 250 °C without adding any catalytic
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2018

Half-sandwich nickel(II) complexes bearing 1,3-di(cycloalkyl)imidazol-2-ylidene ligands

  • Johnathon Yau,
  • Kaarel E. Hunt,
  • Laura McDougall,
  • Alan R. Kennedy and
  • David J. Nelson

Beilstein J. Org. Chem. 2015, 11, 2171–2178, doi:10.3762/bjoc.11.235

Graphical Abstract
  • -coupling; N-heterocyclic carbenes; nickel; Introduction Nickel catalysis is currently an area of great interest, due to the potential for nickel to replace palladium in some catalytic processes, as well as its ability to perform a much wider range of reactions [1]. Nickel complexes bearing N-heterocyclic
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2015

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
PDF
Album
Review
Published 15 Nov 2013

Intramolecular carbonickelation of alkenes

  • Rudy Lhermet,
  • Muriel Durandetti and
  • Jacques Maddaluno

Beilstein J. Org. Chem. 2013, 9, 710–716, doi:10.3762/bjoc.9.81

Graphical Abstract
  • skeleton was achieved by using NiBr2bipy catalysis. Keywords: alkenes; carbometallation; carbonickelation; cyclization; Heck-type reaction; nickel catalysis; Introduction Carbometalation is a reaction involving the addition of an organometallic species to a nonactivated alkene or alkyne to form a new
  • method are the use of an easily prepared Ni(II)bipy complex in combination with manganese dust as a reducing agent, which is not air sensitive, is compatible with fragile functions, and can be used in a catalytic amount. We showed that this nickel catalysis applies to cross-coupling reactions
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2013

Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

  • Carolin Fischer and
  • Burkhard Koenig

Beilstein J. Org. Chem. 2011, 7, 59–74, doi:10.3762/bjoc.7.10

Graphical Abstract
  • )TMEDA]2Cl2, omitting the base and working at room temperature [13][14]. Besides palladium and copper, nickel catalysis also allows the arylation of primary and secondary amines [15][16]. However, the three methods (Ullmann–Goldberg, Buchwald–Hartwig and Chan–Lam) have become standard procedures for N
PDF
Album
Review
Published 14 Jan 2011
Other Beilstein-Institut Open Science Activities