Search results

Search for "transmetalation" in Full Text gives 75 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • via oxidative Pd insertion into the Cu-activated thioester followed by transmetalation with alkenylboronic acid to give complex 210 (Scheme 61A) [105]. The method has been scaled up to a gram scale. Similarly, Hu and co-workers (2021) utilized alkenylboronic ester 211 and Boc2O to synthesize methyl
  • CO insertion (295) and transmetalation with palladium hydride to afford the acylpalladium species 296 (Scheme 71B) [122]. Utilizing a non-precious transition metal as an alternative for Pd, Yoshikai and co-workers (2020) reported the cooperative cobalt/Lewis acidic AlMe3-catalyzed hydrocarboxylation
PDF
Album
Review
Published 28 May 2025

Recent advances in controllable/divergent synthesis

  • Jilei Cao,
  • Leiyang Bai and
  • Xuefeng Jiang

Beilstein J. Org. Chem. 2025, 21, 890–914, doi:10.3762/bjoc.21.73

Graphical Abstract
  • the σ-alkylpalladium intermediate Int-50. The intermediate Int-50 undergoes C–H activation to generate the spiro-palladacycle Int-51, which proceeds via two possible pathways: 1) Path a: oxidative addition/reductive elimination or 2) path b: transmetalation/reductive elimination giving rise to
PDF
Album
Review
Published 07 May 2025

Cu–Bpin-mediated dimerization of 4,4-dichloro-2-butenoic acid derivatives enables the synthesis of densely functionalized cyclopropanes

  • Patricia Gómez-Roibás,
  • Andrea Chaves-Pouso and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2025, 21, 877–883, doi:10.3762/bjoc.21.71

Graphical Abstract
  • . Finally, the new enolate E evolves through intramolecular proton abstraction and elimination of boryllithium [20][21]. The formation of side product 3 observed when dichloromethane was used as a solvent could be explained by protonation of intermediate A, followed by transmetalation of the resulting
PDF
Album
Supp Info
Letter
Published 05 May 2025

Regioselective formal hydrocyanation of allenes: synthesis of β,γ-unsaturated nitriles with α-all-carbon quaternary centers

  • Seeun Lim,
  • Teresa Kim and
  • Yunmi Lee

Beilstein J. Org. Chem. 2025, 21, 800–806, doi:10.3762/bjoc.21.63

Graphical Abstract
  • hydride complex A through the reaction of IPrCuCl with DIBAL-H [35]. Copper hydride species A reacts regioselectively with allene 1 to form the allylcopper intermediate B. Subsequent transmetalation between allyl-Cu B and DIBAL-H generates allylaluminum species C and regenerates IPrCuH (A). The final step
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2025

Recent advances in allylation of chiral secondary alkylcopper species

  • Minjae Kim,
  • Gwanggyun Kim,
  • Doyoon Kim,
  • Jun Hee Lee and
  • Seung Hwan Cho

Beilstein J. Org. Chem. 2025, 21, 639–658, doi:10.3762/bjoc.21.51

Graphical Abstract
  • transmetalation of organolithium and organoboron compounds, copper hydride catalysis, and enantiotopic-group-selective transformations of 1,1-diborylalkanes. Detailed mechanistic insights into stereochemical control and current challenges in this field are also discussed. Keywords: allylic substitution; chiral
  • (Scheme 3) [46]. Their methodology involves a stereoretentive I/Li exchange at −100 °C, followed by transmetalation with CuBr·P(OEt)3 to generate the secondary alkylcopper species 14. These organocopper species demonstrated remarkable reactivity in SN2-type additions to allylic bromides with exceptional
  • the Li/I exchange is essential for preventing racemization of the configurationally labile organolithium intermediate. The subsequent transmetalation with CuBr·P(OEt)3 introduces P(OEt)3 as a supporting ligand, which plays a vital role in stabilizing the resulting chiral organocopper species 14. A key
PDF
Album
Review
Published 20 Mar 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • phenylacetylene was confirmed. Based on previous mechanistic insight from electrophilic amidation studies [101][102], the catalytic amidation of alkynes is proposed as shown in Figure 8. First, the alkenylzirconium complex INT-29, formed through hydrozirconation of alkyne 25, undergoes transmetalation with the
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • through oxidative addition, followed by transmetalation and reductive elimination, to obtain the desired product. Throughout the catalytic cycle, the catalyst undergoes conversion between [M]n and [M]n+2 (Figure 1) [11]. However, using alkyl electrophiles as coupling partners in cross-coupling reactions
  • is reoxidized to Cu(I) 121 at the new anode. The Cu(I) species 121 is either oxidized to the Cu(II) complex by oxygen or plated again on the cathode. The Cu(II) catalyst reacts with aniline to produce a Cu(II) intermediate 122, which then generates a Cu(III) complex 124 through transmetalation of
PDF
Album
Review
Published 16 Jan 2025

Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling

  • John M. Halford-McGuff,
  • Thomas M. Richardson,
  • Aidan P. McKay,
  • Frederik Peschke,
  • Glenn A. Burley and
  • Allan J. B. Watson

Beilstein J. Org. Chem. 2024, 20, 3198–3204, doi:10.3762/bjoc.20.265

Graphical Abstract
  • clean conversion to the desired triazole products 1–21 without any observable degermylation or other side reactions that could be anticipated based on transmetalation to Cu [43]. The generality of the CuAAC process was explored using a range of azides (Scheme 2a), with variation of the germanyl alkyne
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • exchange and transmetalation to the organocuprate 83. The latter undergoes an SN2’ addition to the propargyl chloride 84 and the resulting allene intermediate 85 undergoes an intramolecular Cannizzaro-type hydride transfer via 86 to produce the 8-membered cyclized target 87 in good yield (70%) (Scheme 24
PDF
Album
Review
Published 19 Jun 2024

Rhodium-catalyzed homo-coupling reaction of aryl Grignard reagents and its application for the synthesis of an integrin inhibitor

  • Kazuyuki Sato,
  • Satoki Teranishi,
  • Atsushi Sakaue,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai,
  • Hiroyuki Takeda,
  • Tatsuo Kinashi and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 1341–1347, doi:10.3762/bjoc.20.118

Graphical Abstract
  • elimination of ethylene. Further transmetalation between the complex 8 and another Grignard reagent gives Rh(III)–bis(aryl) complex 9. Finally, reductive elimination affords the desired homo-coupling product 3 and regenerates the Rh catalyst. We did not identify any cross-coupling products such as (2
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2024

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • and S–S bonds. A plausible mechanism for the metal-catalyzed acylation and acylthiolation is illustrated in Scheme 33. Firstly, oxidative addition of palladium to the C–S bond of NTSE 1’’’ afforded intermediate I. The transmetalation from boron to palladium led to intermediate III, followed by
PDF
Album
Review
Published 27 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • may be mentioned here that the complexes [(SIPr)CuX] (X = Cl, Br, I) were also prepared through transmetalation, a method that will be discussed later. In contrast to the aforementioned complexes, [(IMes)CuX] and [(SIMes)CuX] (X = Cl, Br) were best prepared from the corresponding NHC·HCl precursors
PDF
Album
Review
Published 20 Sep 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • corresponding C2-arylated products 127 in good to excellent yields with high site selectivity. A catalytic mechanism was proposed in which the electrophilic C–H palladation of pyridine N-oxide 9 occurs preferentially at the C-2 position leading to heterocoupling intermediate 128. Subsequent transmetalation
  • followed by transmetalation with CuI pyridyl species 133 generated from the reaction of Cu2O with the methylated pyridine to afford intermediate 134 that on reductive elimination results in salt 135. Subsequent demethylation of 135 gives monoarylated product 136 or the intermediate 135 reenters the
  • (Scheme 30). The reaction showed good compatibility with various functional groups. The proposed mechanism (Scheme 30b) involves the silver-catalyzed decarboxylation of heteroaryl acid 156 followed by transmetalation providing palladium intermediate 160. Further, C–H activation of pyridine N-oxide 9
PDF
Album
Review
Published 12 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • their control experiments and literature mechanistic studies (Chegondi et al.) [84], the role of the base (LiOt-Bu) was considered. Following the Cu-catalyzed conjugate addition of B2pin2, the Michael cyclization is facilitated by the transmetalation of stoichiometric Li base with the Cu enolate (Scheme
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • 25. Transmetalation of 25 with the organoboronic acid gives intermediate 26, which upon reductive elimination affords the difunctionalized product 21 and regenerates the Ni(0) catalyst. In 2019, the Stanley laboratory explored the Ni-catalyzed intermolecular three-component carboacylation of
  • to afford the acyl–Ni(II)–amido intermediate 30. Side-on coordination followed by migratory insertion of the bicyclic alkene selectively generates the exo-alkyl–Ni(II)–amido complex 31. Transmetalation with triarylborane affords 32 which undergoes reductive elimination to form the carboacylated
  • –Cu species 60 which after electrophilic amination with the O-benzoylhydroxylamine 54 liberates the final aminoborylated product 55 and a benzoyl–Cu complex 61. To close the catalytic cycle a transmetalation of 61 with LiOt-Bu regenerates the active catalyst. In 2017, Xiao and Fu studied the Cu
PDF
Album
Review
Published 24 Apr 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • °C and 0 °C, temperatures at which these organometallic reagents are also reported to be quite stable. The zincated dithiins can also be prepared by transmetalation of the magnesiated dithiins at −30 °C, and these organozinc reagents can then be used in room temperature Pd-catalyzed cross-coupling
PDF
Album
Review
Published 02 Feb 2023

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • complex 5 from [RhCl(cod)]2 and Et2Zn would generate predominantly the corresponding E-enolate 6 via 1,4-reduction, which is stabilized through η6 binding with benzene ring of the substrate. Subsequent transmetalation with zinc species 4 readily reacts with the carbonyl group to form the intramolecular C
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • transmetalation. The use of dioxane instead of toluene (Table 1, entry 11) gave again a very good yield (89%). However, the employment of THF resulted in a decreased yield (Table 1, entry 10). The best result for the Suzuki–Miyaura cross-coupling between 2 and 3a was obtained using 1 mol % of Pd(PPh3)4 and 4
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • –H activation involving carbon–metal bond or a mechanism involving the usual metal-mediated coupling pathways comprising oxidative addition, transmetalation and reductive elimination steps, they are beyond the scope of this review and will not be extensively covered herein. Homogeneous and
PDF
Album
Review
Published 30 Jul 2021

Recent advances in palladium-catalysed asymmetric 1,4–additions of arylboronic acids to conjugated enones and chromones

  • Jan Bartáček,
  • Jan Svoboda,
  • Martin Kocúrik,
  • Jaroslav Pochobradský,
  • Alexander Čegan,
  • Miloš Sedlák and
  • Jiří Váňa

Beilstein J. Org. Chem. 2021, 17, 1048–1085, doi:10.3762/bjoc.17.84

Graphical Abstract
  • -up report of the Miyaura group in 2007 provided an experimental protocol that allowed the addition of arylboronic acids instead of aryltrifluoroborates [34]. The previously used catalysts PdL1a,b were combined with additional silver salts (AgBF4 or AgSbF6) that greatly accelerated the transmetalation
  • arylboronic acids reacted much slower or did not react at all due to the slow transmetalation to Pd (entries 7 and 8, Table 7) [37]. The addition of phenylboronic acid (or aprotic triphenylboroxine with slow addition of water to the reaction mixture) was also tested in combination with enones differing in
PDF
Album
Review
Published 10 May 2021

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • backbones in the presence of Ag2O provided exclusively the three homomeric cylinders [Ag3(13)2]3+, [Ag3(14)2]3+, and [Ag3(15)2]3+ (state: SelfSORT-I in Figure 7). Upon the addition of gold(I) ions, a one-pot transmetalation triggered an exchange of the Ag+ ions for Au+ in the tris-NHC ligand-based cylinders
  • (SelfSORT-II). Such type of transmetalation in metal–NHC complexes with a retention of the individual homomeric supramolecular assemblies has not been reported in literature. Recently, a quantitative and reversible structural interconversion of supramolecular structures was achieved by the inclusion and
PDF
Album
Review
Published 20 Nov 2020

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
PDF
Album
Review
Published 09 Sep 2020

Regioselective cobalt(II)-catalyzed [2 + 3] cycloaddition reaction of fluoroalkylated alkynes with 2-formylphenylboronic acids: easy access to 2-fluoroalkylated indenols

  • Tatsuya Kumon,
  • Miroku Shimada,
  • Jianyan Wu,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2020, 16, 2193–2200, doi:10.3762/bjoc.16.184

Graphical Abstract
  • -fluoroalkylated indanones are shown in Scheme 5 [28][38]. Thus, the reaction presumably proceeds as follows: (1) transmetalation of the cobalt catalyst with 2-formylphenylboronic acids (2) gives the arylcobalt species Int-1, (2) insertion of the alkyne 1 into the [Co]–Ar bond (see Int-2a) [39], (3) migration
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2020

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • , followed by a transmetalation provided a vinylzinc reagent that was coupled with 48 to afford 128, for which only the E-stereoisomer was observed. Notably, the Negishi conditions were tolerant to the azide present in 48 and the oxirane and 1° iodoalkane present in 91. The subsequent reduction of the azide
PDF
Album
Review
Published 13 Aug 2020
Other Beilstein-Institut Open Science Activities