Search results

Search for "surface potential" in Full Text gives 96 result(s) in Beilstein Journal of Nanotechnology.

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • at the surface of the AuNRs with a lower surface potential than the reduction potential of Ag+ [27]. Electrochemical and crystallographic studies have shown that deposition of Ag+ on the side of the AuNRs (i.e., {110} facets) should be faster than on the tip (i.e., {100} facets) [33]. Another reason
PDF
Album
Full Research Paper
Published 17 May 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • using the SurPASS™ system (Anton Paar, Ostfildern, Germany) to determine the surface potential. Au- and PPAAm-modified titanium substrates were placed in pairs in the measuring chamber with a gap height of 100 μm. The streaming potential was measured at pH 6.5 to 8.0, at 150 mbar in a 1 mM KCl solution
PDF
Album
Full Research Paper
Published 12 Mar 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • voltage, we obtain a parabolic function, as can be seen in Figure 4. Fitting the data with the function where VSP is the tip–sample surface potential difference due to their different work functions [21], we obtain the coefficient α. Construction of the relative permittivity map From the topographic image
PDF
Album
Full Research Paper
Published 28 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • field is applied. Khorasani and coworkers identified nanoparticles (exposed and subsurface) in an epoxy/boehmite nanocomposite by measuring the surface potential by means of KPM [9]. A disadvantage of KPM is that, in addition to the apex of the tip, the sides of the tip are also interacting. This leads
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • surface potential of the i-th nanoparticle at infinite separation, z is the ion valence, e = 1.6 × 10−19 C and k is the thickness of the screening ionic layer “κ”, estimated by the inverse of Debye constant. Polymers and surfactants are usually used for steric stabilization. The model uses the following
PDF
Album
Full Research Paper
Published 12 Aug 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • an alternative approach to find the surface potential without lock-in detection. Our method operates directly on the frequency-shift signal measured in frequency-modulated atomic force microscopy and continuously estimates the electrostatic influence due to the applied voltage modulation. This
  • results in a continuous measurement of the local surface potential, the capacitance gradient, and the frequency shift induced by surface topography. In contrast to conventional techniques, the detection of the topography-induced frequency shift enables the compensation of all electrostatic influences
  • component at ωm by adjusting Udc. The surface potential is then found as Ulcpd = Udc. The response at the second harmonic contains additional information about the capacitance gradient C′′ = ∂2C/∂z2. This signal is interesting in itself as it contains information about both geometric and electronic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • number of atoms. In these cases of larger bodies, contact modeling is used, where the interaction forces are computed by numerically integrating a surface potential [22]. In such cases, the Lennard-Jones (LJ) potential is commonly used [22][26][27]. Furthermore, given the difficulty of accurately
  • to confirm that the force conversion is not ill-posed. Third, static compensation of electrostatic forces was performed to account for surface potential differences between the tip and the sample surface. However, several studies have shown that there is a z-dependency of the required electrostatic
PDF
Album
Full Research Paper
Published 06 May 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • the MoO3 layers were recorded using a 532 nm excitation laser. X-ray diffractograms (XRD; Rigaku Smart lab) of the bulk and exfoliated MoO3 were obtained using a Cu Kα (1.54 Å) X-ray source. The surface potential of MoO3 dispersions was determined by zeta potential measurements using a Malvern
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • additional mechanical (stiffness, elasticity), electrical (conductivity, surface potential), electrochemical (reactivity, mobility and activity), mechanoelectrical (piezoelectricity) and chemical (chemical bonding) material properties. In situ AFM imaging of the sample topography is often used to study the
  • conductive AFM (CAFM). Luchkin et al. used KPFM to analyse the Li-ion distribution in graphite anodes and found a core–shell structure in aged graphite particles [21]. Wu et al. used KPFM to track the changes in the surface potential of LiCoO2 cathodes during ageing and found a decrease of the surface
  • potential with ageing, due to irreversible phase transitions, side reactions on the surface and coarsening of grains [22]. Hiesgen et al. used CAFM to study the degradation of lithium–sulphur cathodes during ageing and found a strong decrease of the conductive area of the sample, which correlated well with
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • Benjamin Grevin Olivier Bardagot Renaud Demadrille Univ. Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France 10.3762/bjnano.11.24 Abstract An implementation of pump–probe Kelvin probe force microscopy (pp-KPFM) is reported that enables recording the time-resolved surface potential in
  • compensation potential (or surface potential (SP)) on the frequency modulation (fmod) of an illumination source. The first demonstration of light intensity-modulated KPFM (IM-KPFM) was carried out in 2008 by Takihara et al. on polycrystalline Si solar cells [12], and it has been recently applied to organic [13
  • reactivated, and nc-AFM/KPFM scanning resumes after a final stabilization delay (Tend). (b) Illustration of a spectroscopic curve acquired in the case of optical pumping. The instantaneous surface potential SP(t) is symbolized by the black line. VKPFM(Δt) curves are acquired for a predefined number of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Stationary beam full-field transmission helium ion microscopy using sub-50 keV He+: Projected images and intensity patterns

  • Michael Mousley,
  • Santhana Eswara,
  • Olivier De Castro,
  • Olivier Bouton,
  • Nico Klingner,
  • Christoph T. Koch,
  • Gregor Hlawacek and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2019, 10, 1648–1657, doi:10.3762/bjnano.10.160

Graphical Abstract
  • a highly coherent He+ source was available, techniques similar to coherent diffractive imaging could be used. These techniques apply an iterative procedure to retrieve the phase of a wave [36]. In reflection, this phase would be determined by the surface potential, which is linked to the topology or
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • known that water molecules present in the ambient air form a dipole layer, which can give rise to an effective surface potential [49]. To reduce the impact of weakly interacting adsorbates, in the next step, the sample underwent in situ UHV annealing, which implicated a WF decrease of both TiO and
PDF
Album
Full Research Paper
Published 02 Aug 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • material conductance, kB is the Boltzmann constant, the values of the activation energy Ea were calculated. For ZnO nanofibers, Ea = 0.40 ± 0.04 eV. This value lies within the error with the potential barrier at the grain boundaries eVs (the surface potential barrier energy between particles of
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • center of the irradiated area) with respect to the non-irradiated area of the Au layer (Figure 6). It should be noted, that the edges of the irradiated area are topographically elevated and exhibit a decreased surface potential because of the higher electron irradiation dose at the turning points of the
  • a surface potential signal slightly above the detection limit of KPFM (Figure 6). With increasing thickness of the Au layer there is a higher contrast (Figure 6). The maximum value of the surface potential difference is between −80 and −90 mV and is connected with the diffusion of Au into Bi2Se3
  • pattern of the surface potential with an amplitude of 20 mV (Figure 9). This value is slightly lower in contrast to the NIs obtained by e-beam irradiation of the 20 nm Au layer (decrease 29 mV), and could be connected with the partial lateral diffusion of the heat or Au atoms/ions. In this way, the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • a <001> step. We propose a model for interpreting the surface potential at the steps by combining the upward dipole moment, in analogy to the Smoluchowski effect, and the local dipole moment of surface atoms. This local change in surface potential provides insight into the important role of the
  • ]. Concerning the charge properties of steps on TiO2, it has been measured with using ultraviolet photoelectron spectroscopy (UPS) that surfaces with a high step density have a lower work function than surfaces with a low step density [28]. The local change in the surface potential at steps on TiO2 has been
  • observed with a lateral resolution of several nanometers by Kelvin probe force microscopy (KPFM) [29][30]. However, the dependence of surface potential on direction and structure of steps such as [001], and has not yet been clarified. In scanning tunneling microscopy (STM) [31] studies, three typical
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • surface-potential characterization. Atomic force microscopy (AFM) was used to characterize the physical morphology (Bruker Dimension Icon, Brook). The water contact angle (CA) of all surfaces was measured using a JC2000C1 contact angle measurements system (Shanghai Zhongchen Digital equipment). At room
  • (compared to Figure 2b). Therefore, we conclude that the change in coating wettability was not induced by the surface morphology. To establish the reason for the wettability change, Kelvin probe force microscopy was used to detect the surface potential of the electrode contact area and the electrode non
  • -contact area in the coating. The surface potential was measured at five points in each sample area. The results are shown in Table 1. Because there are many KPFM images (CPD) for the whole data set in Table 1, as an example, we have only shown the KPFM image for the point 1 to show the contact potential
PDF
Album
Full Research Paper
Published 10 Apr 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • pressure–area and surface potential–area isotherms were registered. The most diluted suspensions (0.03 mg·mL−1 UiO-66-COOH(Zr)) led to poor reproducibility, whereas the isotherms of the more concentrated ones were acceptable. To compare the effect of increasing the ODP content on the more concentrated
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • implementation, Dwyer et al. applied a large bias between the tip and sample to engage the coupling, having the fortunate side-effect of rendering the measurement insensitive to small variations in surface potential as the sample charges. This results in a response that is only sensitive to the time-varying
  • capacitance, simplifying the analysis significantly. Similar techniques may be required to extract information from samples where large time-dependent changes in capacitance and surface potential are expected. Conclusion We have reviewed several established techniques that achieve time resolution using EFM
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • time-dependent changes of the surface potential occurring under illumination. This work also unravels lattice expansion phenomena under illumination in perovskite structure forming photo-absorbing materials [2]. Pablo A. Fernández Garrillo and co-workers go one step further by addressing photocarrier
PDF
Editorial
Published 10 Jan 2019

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • variations provide relative but quantitative variations of surface potential at the investigated interfaces. The PC-AFM measurements were carried out in air, using a Bruker Dimension Icon microscope with a Nanoscope V controller. An extended TUNA external module was used for current detection with a
  • nominal thickness of the P3HT-COOH deposit (13 nm) is similar to the roughness of the columnar assembly. No correlation is observed between the columnar topography and the corresponding surface potential image (Figure 5b), which shows variations within [260; 500] mV. By comparison with the data of Figure
  • DC bias applied to the tip (VDC tip) (to compensate for positive charges in P3HT) is necessarily positive. The relation between the surface potential and VDC tip is given by Vcpd = VDC tip. This leads to a positive value of the photovoltage, as observed experimentally in Figure 3. Photoconductive-AFM
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • chain on top of a periodic surface potential was simulated as an edge-driven Frenkel–Kontorova model. Similar to [101], a critical length scale was identified, above which superlubricity breaks down, due to local commensuration induced by overall interface relaxations. On the other hand, for
  • and charging [120] concluded that friction increases when the applied surface potential changes from negative values to positive values, and that, for negative surface potential, friction depends on the alkyl-chain length of the cation of the RTIL. Assuming well-ordered anchored molecular layers, the
  • effects of molecular dipolar charges on friction were investigated in a model [121], predicting a friction peak when a suitable resonance condition is reached as a function of an applied electric field. Different anions play a complex role depending on the surface potential, and related to the steric
PDF
Album
Review
Published 16 Jul 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • account the built-up time of the SPV, which is the time needed for the surface photovoltage to appear in the first place. This time is associated with the exciton generation, charge dissociation and charge transport along the material so that a photo-generated surface potential can be detected using KPFM
  • the following expression: where D is the modulation duty ratio, f is the modulation frequency of the light, (ΔVAV/ΔVmax) is the ratio between the time-averaged surface potential and the surface photovoltage at saturation, and τ is the minority-carrier lifetime. Figure 4 shows the spectroscopy curve
  • derived from a previous work to estimate separately the SPV decay time constant τd and also τd together with a non-zero SPV built-up time constant τb [4]: In these expressions VDark is the in-dark surface potential, VLight the surface photovoltage measured under continuous wave illumination, τd the SPV
PDF
Album
Full Research Paper
Published 20 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude
  • techniques under ambient conditions. We compare AM-KPFM in lift mode, on the second eigenmode and off resonance, as well as FM-KPFM with double sideband detection and heterodyne FM-KPFM. Theory KPFM [29] utilizes a conductive SFM tip as Kelvin probe [30] to map electrical surface potential variations on a
  • [20]. This so-called stray capacitance [35] can decrease the lateral resolution by averaging the surface potential over a larger area. To reduce the effect of the long-ranged electrostatic interaction of the cantilever, force gradient detection can be used [18][20][23]. The presence of a tip–sample
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • . To simultaneously map VOC directly, the topography is tracked in the same manner, but a secondary PID loop is also configured to continually adjust the sample bias in order to maintain a photocurrent of zero. This is akin to Kelvin probe microscopy or scanning surface potential microscopy, in which a
  • polycrystalline film is relatively rough when considered at the nanometer scale, revealing grains, facets, and grain boundaries with topographic protrusions and depressions as great as ±150 nm. Surface-potential studies of a range of photovoltaics have identified correlations between such features and their
  • to move to the underlying n-type CdS layer [6]. Equivalent conclusions have been inferred from complementary techniques such as simple conductive AFM [27], surface-potential mapping [28], and electron beam induced currents [29], though the fully three-dimensional, directly acquired data of ISC* and
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • photostriction can be simultaneously investigated by implementing a specific protocol based on the acquisition of the tip height and surface potential during illumination sequences. The obtained data confirm the existence of lattice expansion under illumination in MAPbBr3 and that negative photocarriers
  • accumulate near the crystal surface due to band bending effects. Time-dependent changes of the surface potential occurring under illumination on the scale of a few seconds reveal the existence of slow ion-migration mechanisms. Lastly, photopotential decay at the sub-millisecond time scale related to the
  • the photocarrier transport on the sole basis of KPFM data. This uncertainty is largely due to the contributions of the ionic species to the surface potential contrasts [6][8][9][10]. Time-resolved measurements have especially shown that intra-grain ion-migration mechanisms [9] can significantly impact
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018
Other Beilstein-Institut Open Science Activities