Search results

Search for "transfer" in Full Text gives 1026 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • proteins in the cell lysate, 20 μg of total protein per sample was mixed with Laemmli buffer with DTT (50 mM) and separated by an SDS-PAGE assay. Proteins were transferred to a nitrocellulose membrane (Bio-Rad transfer system) using transfer buffer (2.5 mM TrisHCl, 20 mM glycine, 0.01% SDS and 20% methanol
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • mechanism involves the transfer of electrons from BH4− (the electron donor) to the dye (the electron acceptor) facilitated by the surface of the metal nanoparticles [42][43]. Prior to electron transfer, dye and BH4− are adsorbed onto the catalyst surface, as depicted in Figure 5. Consequently, the
PDF
Album
Full Research Paper
Published 04 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier’s law of heat transfer
  • not a large number of recent papers published looking at the underlying physics in the field of focused ion beams. A broader look at current literature on heat transfer induced by particle beams highlights that heat damage is not only problematic for FIB processing, but also presents challenges for
  • based on heat transfer and to Monte Carlo or finite element simulations [17][18][19]. Open source programs that assess heat deposition and diffusion are readily available to assess damage in light–tissue interactions [18]. For electron beams, multidimensional models predicting electron beam-induced
PDF
Album
Full Research Paper
Published 27 Sep 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • and transfer them to the respective electrode. The thickness of the HTL also influences the device performance significantly. To optimize the HTL thickness for optimal device performance, we assumed a layer thickness of monolayer Ge2Se2, ranging from 1 to 10 nm. Figure 7a depicts the change of the
  • carriers (for electrons and holes). To calculate the charge transfer and use it in the solar cell, it is required to know the electron affinity and work function of monolayer Ge2Se2. The electron affinity is calculated as EA = EVac − ELUMO, where EA is the electron affinity, EVac is the vacuum energy level
  • using Ge2Se2 as HTL; (a) device setup consisting of stacked layers of FTO–TiO2–CsSn0.5Ge0.5I3–Ge2Se2–Ag; (b) band offset among different PSC layers, demonstrating the ease of charge-transfer from the active layers to the respective transport layers. PSC performance parameters as functions of (a) HTL
PDF
Album
Full Research Paper
Published 11 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • difference (LCPD) between a probe tip and a surface, related to the work function. Here we use this technique to map the LCPD of graphene nanoribbons grown on a Au(111) substrate. The LCPD data shows charge transfer between the graphene nanoribbons and the gold substrate. Our results are corroborated with
  • opening a size-dependent energy gap [6][9]. As in graphene, the Fermi level of GNRs is also strongly influenced by charge transfer between the substrate and the GNR [10], again related to differences in the work function. Here, we take the work function as a local property influenced by local charge, that
  • electronic properties, a suitable method to study the charge transfer, that is, the local work function, between a GNR and a metal substrate at the atomic scale is needed. In general, as detailed above, the local work function can provide evidence for structural, electronic, and chemical variations at
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • or Hhfac, removing most of the ligand elements. A second important factor here could be the thermal energy input from the elevated stage temperature of 60 °C, which increases the mobility of the formed silver atoms and clusters in the carbonaceous matrix. Finally, collisional momentum transfer from
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • charge on the polymer. It is critical in enabling quick electron transfer between an enzyme and an electrode surface, triggering the enzyme’s catalytic function for rapid biosensing [100]. Environmental sensing applications One key advantage of using nanosensors in environmental sensing is their ability
PDF
Album
Review
Published 22 Aug 2024

Signal generation in dynamic interferometric displacement detection

  • Knarik Khachatryan,
  • Simon Anter,
  • Michael Reichling and
  • Alexander von Schmidsfeld

Beilstein J. Nanotechnol. 2024, 15, 1070–1076, doi:10.3762/bjnano.15.87

Graphical Abstract
  • and a quality factor of Q = 9000. After transfer of the cantilever, which is glued to a cantilever holder, the cantilever is mechanically firmly attached to the AFM scan head, while the optical fiber and the sample are approached to the cantilever and the tip by piezoelectric motors for coarse motion
PDF
Album
Full Research Paper
Published 20 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • adhesion of sulfate-reducing bacteria. Furthermore, graphene coatings can also exhibit antibacterial activity through electron transfer phenomena as reported by Yang et al. [114] for graphene coatings on titania. The authors reported that the increased electrical conductivity was due to the unpaired
  • electrons at the Schottky-like interface between graphene and titanium. The enhancement of electron transfer rate promoted a relevant bactericidal action. Furthermore, the authors proved the relationship between activity and electron transfer rate by adding an insulating layer of zirconia and observing no
  • strength. The improvements are due to the graphene coating, which allowed for a better load transfer, inter-layer sliding, and crack deflection. Similarly, Askarnia et al. [135] used electrophoretic deposition for coating a magnesium alloy with GO. The authors reported an increase of both hardness and
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • other types of vesicles, for instance from the plasma membrane, may play a role in the transfer of information between cells. For a list of various types of extracellular vesicles (EVs), see [5]. For therapeutic purposes, EVs may not only be loaded with drugs after the release from cells, but incubation
PDF
Album
Perspective
Published 12 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • /CHL/IR780 could be due to the presence of F127-folate on the surface of the nanoparticles (Table 1). Targeting ligand Cancer cells overexpress many receptors and markers for their growth; one of them is the folate receptor [35]. The folate receptor binds to folic acid and would then transfer it into
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  •  10 is obtained using the calculated conduction and valence bands positions. The more effective and faster electron transfer kinetics of MoS2/WS2 should account for the enhanced photocatalytic activity under irradiation. The PD process can take place as per the following two mechanisms: Or as follows
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • apparent flake height seems to depend on both the tip–sample voltage and on the material, we explore these correlations on both GO and rGO flakes by biasing the tip with a DC voltage. To prevent any interaction between flakes arising from charge transfer through the substrate [79], we deliberately chose
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • industrial wastewater. Photocatalysis is an environmentally friendly water purification method that uses light-activated catalysts to destroy contaminants, offering an advantage over traditional methods that merely transfer contaminants between phases [17][18][19]. While some studies on CQDs involve costly
PDF
Album
Full Research Paper
Published 25 Jun 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • solving Equation 1. The presence of gallium atoms in the redeposited material was taken into account by the coefficient μi. The transfer of the values of between the rectangular grid and the triangular mesh was carried out as outlined above for the ion fluxes and the displacement rate . The variation of
PDF
Album
Full Research Paper
Published 24 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • through edge effects. Edge-functionalized GQDs have oxygen-containing functional groups such as hydroxy, carboxyl, carbonyl, and epoxy groups, which can conjugate to various biological/organic/inorganic molecules such as proteins, antibodies, or metal ions [12]. The capability of electron transfer/energy
  • between the phenyl structure of purine and the planar hexagonal carbon structure of graphene. Effect of pH Figure 6a presents the pH dependence of the electrochemical response. The values of Ep and Ip vary as a function of pH, indicating that the oxidation process involves the transfer of protons. The
  • equations (Figure 6c): The slopes of the EURI vs pH and EHYP vs pH plots are close to the theoretical value of the Nernst equation (0.0599), indicating that the oxidation process involves the transfer of an equal number of protons and electrons. Effect of scan rate The effect of the scan rate on the
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low-k material at the drain

  • Kalai Selvi Kanagarajan and
  • Dhanalakshmi Krishnan Sadhasivan

Beilstein J. Nanotechnol. 2024, 15, 713–718, doi:10.3762/bjnano.15.59

Graphical Abstract
  • barrier width enhances electron transfer in the on-state. Leakage current in the off-state is reduced by a wide tunneling barrier. Subthreshold swing The gate dielectric material and the geometry of the transistor help in reducing the subthreshold swing. The subthreshold swing is 5 mV/dec for VTFET with
  • [12] is 2.96 × 10−13 A/μm. The threshold voltage is 0.28 V. The on-state current is 1.00 × 10−5 A/μm. The transfer characteristics of the three devices are presented in Figure 7. The leakage current is minimal in the proposed model. Miller capacitance and leakage The high dielectric constant of HfO2
  • regarding energy band profile. Energy band diagrams of the proposed VTFET with DLWLS + spacer in on-and off-states. Id vs Vgs of the VTFET with DLWLS + spacer and the model in [12]. Comparison between transfer characteristics of VTFET with DLWLS + spacer, DLWLS, and spacer. Capacitance (Cgs)–voltage
PDF
Album
Full Research Paper
Published 19 Jun 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • additional resonance peaks, expanding its potential range of applications. Results and Discussion Transfer function analysis For a traditional rectangular cantilever beam, the dynamics of the system can be described by transfer functions [12][23]. Representing the cantilever as an isolated input/output
  • beam. They are shown in Figure 1a. The Bode plots of the non-contact tip–sample interaction [12] and the contact tip–sample interaction [23] can be obtained through transfer function analysis. The results indicate that the higher-order modal response of the traditional rectangular cantilever gradually
  • . More details about the derivation process can be found in [19]. The final result for the transfer function G of the infinite product expansion is obtained as: where s is the (complex) Laplace variable, and m is the mass per unit length. EI and c are the flexural stiffness and the damping coefficient
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • is exemplified by hair's resistance to heat transfer in humans [4][24], and the role of hair in sensing mates by male mosquitoes [25]. Additionally, plants may exhibit hair-like fibrillar structures, such as the nanometer-thick mastigonemes on the flagella of microalgae [26] and the high-aspect-ratio
PDF
Album
Review
Published 06 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • radical cations can participate in various reactions such as dehydration, dimerization, and hydrogen transfer before recombination [112][113][114]. This was recently shown for fs-laser irradiation of C5 to C11 alkanes by Ishikawa et al., who reported C–C bond formation. They analyzed the formed products
  • proposed a mechanism of electron transfer from the solvent, which produced acetone as a by-product. Since this transfer is not possible in water and only plasma reactions are available, Ag could not nucleate during LRL in water because of the oxidizing activity of hydroxyl radicals [121]. Overall, LSPC in
PDF
Album
Review
Published 05 Jun 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • simple electron transfer process [34]. If the •OH radicals play a crucial role in the MB degradation, the reaction rate is expected to decrease significantly. As depicted in Figure 8a, adding an excess amount of 10 mM IPA to the reaction mixture significantly suppresses the MB degradation (by ca. 28.5
  • anions through a simple electron transfer process [37]. The photocatalytic degradation of MB is mildly affected by BQ (decolourisation efficiency drops by 13.5%, indicating the influence of during the photocatalytic degradation of MB [37]. The mineralisation of MB was estimated with COD measurements
  • photocorrosion and exhibits excellent reusability for the degradation process. The mechanism of MB degradation over the CF/GQDs catalyst is illustrated in Scheme 2. Under visible light irradiation, photogenerated holes (h+) are created in the valence bands via the transfer of photogenerated electrons (e−) from
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • the magnetization of the Co1 layer. The layers were deposited using electron beam evaporation (Co, Pb) and AC sputtering (Si3N4). The deposition setup had a load-lock station with vacuum shutters, allowing one to transfer the sample holder without breaking the ultrahigh vacuum in the deposition
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • Gaussian cross section will lead to pattern infidelity in subsequent pattern transfer into the underlying substrate. The aim of this work is to use FEBIE to modify the sidewalls of as-deposited FEBID lines in order to obtain vertical sidewalls. The paper is organised as follows. First, the idea is
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • from STS experiments [49][50][51], it is lower than the energy observed in photoemission experiments [52]. A possible rationale is the locally lifted graphene in the presence of the tip [53], which in turn decreases the charge transfer from graphene to the metal and reduces the p-doping [52] and
  • ], hybridization of the graphene defect with the metal possibly induces electron transfer into graphene giving rise to local n-doping and the Dirac cone below EF. In addition, the distortion of the graphene lattice that accompanies the increased hybridization with the surface may explain the dim rim of the vacancy
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024
Other Beilstein-Institut Open Science Activities