Search results

Search for "activity" in Full Text gives 758 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects. Keywords: antibacterial activity; berberine; drug-release system; electrospun nanofiber; polylactic acid; Introduction Medicinal plants have various biologically active compounds, such
  • prepared by antisolvent precipitation could reach up to 5.0 mg/mL, which notably increased the antibacterial activity of BBR [7]. Electrospinning is a convenient technique that allows one to fabricate nanofiber scaffolds with various compositions and structures. During the electrospinning process, a
  • -release behavior of BBR from the electrospun PLA nanofiber scaffold, regarding drug–polymer compatibility and hydrophobicity of the scaffold. Besides, the antibacterial activity of these scaffolds relating to the release of BBR during 24 h was examined against methicillin-resistant Staphylococcus aureus
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach. Keywords: electrical properties; energy
  • influence of porosity and conductive properties of these composites on the electrochemical activity of catalyst particles in OER. Elemental mapping by energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of MCO particles inside the hydrogel structure (Figure 2 and Supporting Information File 1
  • properties resulting from an increase in conductive carbon particles is also visible in the OER catalytic activity (Figure 5). The linear sweep voltammetry polarisation curves (Figure 5a) showed that an increase in the cCB contribution to the hydrogel matrix translated into an increase in the number of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of
  • solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1–1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded
  • against cutaneous and visceral leishmaniasis has been explored [42]. In vitro and in vivo studies have revealed that curc displays leishmanicidal activity against amastigotes and promastigotes of the species Leishmania amazonensis [43], Leishmania braziliensis [44], Leishmania donavani [45], Leishmania
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • advantages of using this type of nanoparticles as nanocarriers are their potential use for drug controlled release, the ability to protect drugs and other molecules with biological activity against the environment, improvement of their bioavailability and therapeutic index [17]. These nanocarriers are
  • schistosomiasis due to their characteristics as drug carriers [10], metal nanoparticles usually present intrinsic action even when not loaded with drugs. Works with other parasites suggest that metallic nanoparticles may affect enzyme activity necessary to the physiology and production of the tegument [26
  • (Pilocarpus microphyllus), which has known activity against adult, young, and egg forms of Schistosoma mansoni [57]. Since this is an apolar molecule with poor solubility, the author proposed a nanosystem using liposomes to make this molecule more useful in schistosomiasis therapy. The results showed that
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • eukaryotic cells [1][2], or bacteria and biofilms [3][4]. As nanovectors of drugs, they can deliver drugs locally, leading to a more efficient drug activity. Also, the required doses and the drug impact on healthy tissues compared to the free drug are lowered. Regarding the dramatic emergence and spreading
  • antibacterial activity is high because of their small size and because any antibacterial natural or synthetic peptide containing KE diads may be used to create such PDA NPs. Fluorescent PDA NPs made with a KE diad-containing protein or peptide have never been reported so far. They may be obtained by labelling
  • sterilized by autoclaving at 121 °C for 30 min before use. Bacteria were thawed, diluted, plated on agar plates (LB for E. coli and MH for S. aureus), and incubated under aerobic conditions for 24 h at 37 °C. Evaluation of the antibacterial activity The antibacterial activity of pristine NPs, Ox-, and RhBITC
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • promising biological properties, particularly antioxidant activity. However, its medical applications are limited due to its low water solubility, bioavailability, and pH-instability. CUR-loaded albumin microparticles (CUR-HSA-MPs) of submicron size in the range of 800 to 900 nm and a zeta potential of −15
  • microparticles. The incorporation of CUR within the versatile biomolecular platform MnCO3-HSA-MPs has not been previously reported. The obtained albumin microparticles are expected to enhance the water solubility of CUR, provide controlled release, and improve its biological activity. These peanut-shaped
  • very strong cytotoxic activity on MMNK-1 cells. Free CUR, however, showed higher cytotoxicity than CUR-HSA-MPs in MMNK-1 cells. In fact, CUR has a cytotoxic effect on normal cells, but tumor cells are more sensitive to it [47]. As demonstrated recently, CUR preferably induces apoptosis in highly
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • different chemical methods [18][19]. Elemental sulfur nanoparticles (SNPs) have already demonstrated significant insecticidal, fungicidal, and bactericidal activity [20][21]. By manipulating particle size and surface area, SNPs can exhibit higher absorption, increase the efficacy of new insecticide
  • larvae, pupae, and adults of the fruit fly Drosophila melanogaster [48]. In addition, nanoencapsulated essential oils have chemical activity and increased mobility, allowing for the penetration into insect tissues through the cuticle or by ingestion through the digestive tract [49]. Essential oils are
  • lipophilic and, thus, can enter the insect and cause biochemical dysfunction and mortality [50]. Rosemary essential oil-laden nanoformulations have shown significant insecticidal activity for the effective management of the red beetle Tribolium castaneum [51]. Another study claimed that eucalyptus essential
PDF
Album
Full Research Paper
Published 17 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • the development of a suitable experimental setup, a strong influence of direct fluorescent labeling of HbMPs on the phagocytosis activity of monocytes was found. Consequently, we chose an indirect phagocytosis assay for our experiments, which did not require any labeling of the HbMPs potentially to be
  • addition, samples with HbMP pre-feeding were also prepared with a shortened incubation time of only 30 min to obtain information of the course of phagocytic activity over time. Table 1 offers an overview of the samples described above. Identical negative controls were carried along, which remained at 0 °C
  • sample and the corresponding reduction in the other samples provided information about the extent of phagocytosis in the pre-feeding step. For each experimental run, blood from a different donor was used. Due to the donors’ variability (e.g., different cell counts, immune cell activity, or surface
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. However, even with these modifications, it relied on the colorimetric principle and was not applicable for the quantitative determination of analytes. In recent years, to address these challenges, various signal amplification strategies, such as DNA amplification, nanozyme activity, surface-enhanced Raman
  • , bleaching, and degradation. Gold nanoparticles possess intrinsic peroxidase-like activity, which converts particular peroxidase substrates into coloured products in the presence of hydrogen peroxide. The enzyme-like properties of nanomaterials have been utilized in various LFA formats. The inclusion of
  • particle size from 50 to 4.98 nm. In another study, the size-dependent photothermal conversion efficiency of platinum nanomaterials was studied by Depciuch et al. for cancer therapy. Spherical platinum nanoparticles with diameters of 2 and 80 nm were studied regarding the photothermal activity in colon
PDF
Album
Review
Published 04 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • integrating the yield of the fragment anions at the peak position are provided. The asterisks indicate peaks with weak intensity. Funding This work has been supported by a statutory activity subsidy (No 141/23/B) from the Polish Ministry of Science and Higher Education. H.A.C. acknowledges support for a
PDF
Album
Full Research Paper
Published 26 Sep 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • metals into organisms. Thus, the present study reports nanoscale quantitative structure–activity relationship (nano-QSAR) models, which are based on an ensemble learning approach, for predicting the cytotoxicity of heavy metals adsorbed on nano-TiO2 to human renal cortex proximal tubule epithelial (HK-2
  • most widely used. Therefore, the joint organismal toxicity should be assessed. Recently, nanoscale quantitative structure–activity relationship (nano-QSAR) models have been successfully applied to investigate the toxicity of NPs. QSAR models for predicting the biological activity of 48 fullerene
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • induce conformational changes, which result in denaturation and loss of activity [43]. Similarly, electrostatic interactions between oppositely charged NPs and antibodies result in weak interactions where the antibodies are easily detached due to small changes in pH or ionic strength [44]. Covalent
  • of antibodies on the NP surfaces, because at physiological pH (pH 7), the most reactive amine groups are situated in the Fab region, which further leads to the loss of biological activity [50][51]. To avoid this, other techniques with oriented immobilization are mostly preferred for conjugation
  • targeting ability after in vitro protein corona formation, while the activity was preserved after in vivo protein corona formation [82]. Protein corona formation on antibody-conjugated NPs can have both negative and beneficial effects. Nayak et al. adsorbed bovine lactoferrin (BLf) onto AgNPs and studied
PDF
Album
Review
Published 04 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • [28][29][30], and biomedical [31] applications. These materials are distinguished by their exceptional attributes, including a substantial specific surface area, pronounced porosity, and modifiable chemical structures [32]. Within the catalytic domain, MOFs demonstrate catalytic activity stemming from
  • ) indicated superior catalytic activity compared to MIL-125(Ti). Notably, MOF-210 has established a remarkable record in CO2 adsorption among all porous materials, boasting an adsorption capacity of 2870 mg·g−1 [34]. Such properties facilitate favorable interactions between CO2 molecules and catalytic sites
  • performance of CO production (FECO = 78.8% at −0.85 V vs RHE), compared to its bulk counterpart with a value of 33.7% (Figure 2b). The optimal sample also showed a high turnover frequency (TOF) and outstanding stability after a testing period of 14 h (Figure 2c,d). The high catalytic activity can be ascribed
PDF
Album
Review
Published 31 Aug 2023

Green SPIONs as a novel highly selective treatment for leishmaniasis: an in vitro study against Leishmania amazonensis intracellular amastigotes

  • Brunno R. F. Verçoza,
  • Robson R. Bernardo,
  • Luiz Augusto S. de Oliveira and
  • Juliany C. F. Rodrigues

Beilstein J. Nanotechnol. 2023, 14, 893–903, doi:10.3762/bjnano.14.73

Graphical Abstract
  • current drugs used to treat the disease. The synthesized SPIONs showed promising activity against Leishmania and can be considered a strong candidate for a new therapeutic approach for treating leishmaniases. Keywords: coconut water; Leishmaniasis; Leishmania amazonensis; nanomedicine; SPIONs
PDF
Album
Full Research Paper
Published 30 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • the same time selectively enhance regeneration in host tissues. The authors point out that in this context, protein-based materials and especially silk materials are interesting candidates due to their natural origin, biological activity, and structural properties. These exciting recombinant
PDF
Album
Editorial
Published 03 Aug 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • trypanocidal activity against trypomastigotes compared to that of the free drug [18]. Among the aforementioned nanosystems, SLNs have recently gained special attention owing to their biocompatibility properties, biodegradability, relatively easy surface and composition modification, and efficacy in loading and
  • higher cumulative release and considerable higher activity against amastigotes compared to previously reported BNZ-loaded NLCs. Moreover, we report the dose-response intrinsic activity of myristyl myristate, a relatively common constituent of NLCs, against T. cruzi, which might be of future interest to
  • repulsion after adding a non-ionic surfactant [41]. Cytotoxicity and hemolytic activity Cytotoxicity assays using the tetrazolium 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide salt method (MTT) showed that Chinese hamster ovary cells (CHO) viability was affected by BNZ concentration in a dose
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • catalytic performance in degrading the pollutants methyl orange and rhodamine B. The antibacterial activity of the nanocomposite is pH-dependent, related to the alterations in surface properties of the nanocomposite at different pH values. At pH 6, the nanocomposite demonstrated the highest antibacterial
  • activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material. Keywords: alginate; bacterial activity; catalysis; lactose; silver nanoparticles; synthesis; Introduction
  • release of silver ions or electrostatic interaction between AgNPs and microbial cells, have been proposed [21][22]. The AgNPs might release silver ions capable of binding to nucleic acids, thereby, exhibiting antibacterial activity [23][24]. Consequently, any silver-containing composite material with
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • studies [20][21][22]. Besides, Nhu et al. [23] used rosin as a green chemical approach to fabricate ZnO nanoparticles, exhibiting a high photocatalytic activity for both methylene blue (100%) and methyl orange (82.78%) decomposition after 210 min under UV radiation. Moreover, the advantages in the
PDF
Album
Editorial
Published 13 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • the electrode are diffusion-controlled, and the linear relationship (R2 = 0.9674) between peak height and scan rate suggests an enhanced electrochemical activity. Electrochemical detection of malathion Using the modified working GQDs/GCE electrode as electrochemical sensor, a differential pulse
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • surface chemistry, enabling nanosensors to achieve extremely low detection limits. Numerous nanomaterials shown in Figure 3 have different functionalities, including high conductivity, good catalytic activity, and optical and plasmonic properties, making them attractive candidates for opto-electrochemical
  • materials as potent analytical tools because of their advantages in terms of portability, affordability, high sensitivity, and ease of fabrication. Through functions such as active large surface area, rapid electrode kinetics, and efficient catalytic activity, the amplification of electrochemical signals
  • wide linear detection range with a detection limit of 0.05 μM. Due to the synergistic effects of the wide porosity and high specific surface area of the MOF and the outstanding catalytic activity and high conductivity of Ag nanoparticles, the hybridisation improved the electrochemical performance of
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • differences in crystal structure are reflected in direct or indirect electron transitions. The bandgaps of anatase and rutile differ only by 0.2 eV, but can influence significantly the creation of electron–hole pairs, resulting in an increase of the photocatalytic activity. Anatase has a higher decomposition
  • efficiency than rutile [14][31], while the highest photocatalytic activity has been found in mixed anatase/rutile TiO2 [13][32]. One possible explanation is that the difference in the crystal structure and chemical bonding results in different ionization potentials and electron affinities. Exploiting these
  • ratio between anatase and rutile that yields the highest photocatalytic activity. Thus, the main scope of this study is to find the best process parameters for the pyrolysis synthesis of TiO2 powders. Another part is to obtain powders with specific mixtures of the crystallographic phases (anatase/rutile
PDF
Album
Full Research Paper
Published 22 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • , by inorganic components generated by sol–gel processes from silicon alkoxides is an illustrative example of biohybrids that display the extraordinary functionality inherent to the assembled living components. For instance, bacteria such as Escherichia coli maintain their metabolic activity entrapped
  • demonstrated great biocompatibility, allowing the cells to survive over long periods of time [38]. However, in the present study using chitosan-based biohybrids, we have observed that the cells did not stay alive for long. The current results point out that chitosan may exhibit antibacterial activity
  • –alginate biohybrid systems (Supporting Information File 1, Figure S1). The optimization study also showed that the use of a sodium silicate concentration of 7.5% may cause an increase in the diffusional limitation, reducing the exchange of compounds necessary for the biological activity of the encapsulated
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • , this has come to be explained more rationally. Nanotechnology has a significant impact not only on the extreme science of the very small size regions [27][28][29], but also on realistic materials science [30][31][32]. For example, the elucidation of catalytic sites exhibiting very high activity [33][34
  • and activity are due to features at the atomic and molecular level [141][142]. It is often observed that a particular molecular structure or an atom at a particular site can be highly functional and active. Molecular nanoarchitectonics, as shown here, can be an important key to understand such aspects
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • catalytic activity of the catalysts with and without GO were studied. The catalysts were fabricated via a two-step electrodeposition. The first step included the deposition of GO flakes, which, in the second step, were reduced during the simultaneous deposition of NiFe or CoNiFe. As a result, NiFe-GO and
  • CoNiFe-GO were fabricated without any additives directly on the nickel foam substrate. A significant improvement of the OER activity was observed after combining NiFe with GO (OER overpotential η(10 mA·cm−2): 210 mV) compared to NiFe (η: 235 mV) and GO (η: 320 mV) alone. A different OER activity was
  • observed for CoNiFe-GO. Here, the overall catalytic activity (η: 230 mV) increased compared to GO alone. However, it was reduced in comparison to CoNiFe (η: 224 mV). The latter was associated with the change in the morphology and structure of the catalysts. Further OER studies showed that each of the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • cytotoxicity activity on cancer and healthy cells. The results showed a selective cytotoxicity of the nanoparticles towards cancer cell compared to that towards monocytes. This finding gives rise to the development of a new system where cytotoxicity can be selective. This may benefit future research in the
PDF
Editorial
Published 27 Mar 2023
Other Beilstein-Institut Open Science Activities