Search results

Search for "oxides" in Full Text gives 453 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • are arranged regularly along the structural edges of the fiber, being advantageous to produce functional nanoarchitectures. Thus, in recent years the number of publications related to the assembly of different types of nanoparticulated solids (e.g., metals, metal oxides, and graphene) and sepiolite or
  • double oxides” in the presence of diverse species, e.g., silica nanoparticles [32]. Nanoarchitectonic materials involving the growth of LDH nanoparticles in the presence of fibrous clay silicates were patented several years ago [33]. Direct co-assembly of already formed particles of each component does
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • , Germany Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany August Chelkowski Institute of Physics, University of Silesia, 40–007 Katowice, Poland 10.3762/bjnano.10.155 Abstract Controlling the work function of transition metal oxides is of key importance with regard to
  • method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices
  • . Keywords: Kelvin probe force microscopy (KPFM); reduction and oxidation; SrTiO3; TiO nanowires; TiO/SrTiO3 heterostructure; transition metal oxides; work function; Introduction Transition metal oxides are viewed today as some of the most promising materials in various fields, ranging from (photo)catalysis
PDF
Album
Full Research Paper
Published 02 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • Liu and co-workers [131]), and supramolecular assemblies with short peptides and their bio-functions (by Yan and co-workers [132]) have been investigated. As examples of research efforts regarding two-dimensional nanoarchitectures, the enhanced reduction of nitrogen oxides by facet-engineered two
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • high temperatures in the range of 300–800 °C. The development of high-temperature gas sensors requires the creation of new materials that are stable under these conditions. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating composites with highly
  • oxides, such as SnO2, ZnO, WO3, and In2O3, that have been widely used in resistive gas sensors cannot be applied directly, primarily due to the drift of the sensor parameters at temperatures above 500 °C. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating
  • difference in the adsorption properties, reactivity and electrical behavior of semiconductor oxides and silicon carbide, as well as possible chemical interactions on their interface, cause changes in the sensor performance of composite materials. The SiC-based materials in the form of planar Pt/MO/SiC
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • percentage of bound surface oxygen, which could lead to an improvement in sensitivity of the ITO film. The samples are made up of ITO (in overwhelming proportion) and probably islands of In and Sn independent oxides (Figure 4a–c). The amount of the latter decreases for the treated samples. These phases
  • exhibited a different electrical charge, so it is reasonable to assume that the associated binding energies are slightly higher. The amount of oxides decreases in the treated samples as compared to untreated ones (Table 3). Separate phases of In2O3 and SnO2, respectively, are observed in all studied samples
  • . The In2O3 phase appears in a larger quantity for the untreated samples and decreases with increasing thickness (230–370 nm) of the layer for both treated and untreated samples. On the other hand, the amount of Sn oxides decreases for the treated samples. Therefore, it can be concluded that ITO is very
PDF
Album
Full Research Paper
Published 25 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • electrode is liberated from oxides. In the literature, it is often observed that the current during the backward scan is higher and/or extends to less positive potentials than during the forward scan, since in the forward scan the electrode is blocked by intermediate carbonaceous species (e.g., CO) formed
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • prominent role of oxygen vacancies in the photocatalytic performance of bismuth tungsten oxides is well recognized, while the underlying formation mechanisms remain poorly understood. Here, we use the transmission electron microscopy to investigate the formation of oxygen vacancies and the structural
  • appeared at 3.02, 4.39, 6.68, 7.61 nm−1, which are in good agreement with the (012), (104), (116) and (214) planes of the hexagonal bismuth phase (PDF#85-1329). Moreover, no reflections that can be associated with the crystal structure of bismuth oxides appear during the whole irradiation process. This
  • . Local electric fields contribute to the observed process of Bi cluster formation and oxygen release. Our experimental results suggest that the use of energetic electrons in a TEM is an effective means to induce oxygen vacancies or other defects in bismuth tungsten oxides. We suggest that it is possible
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • between the two metal oxides. The sensor based on the Mn3O4/WO3 composite with 3 atom % Mn showed a high selective response to hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) at working temperatures of 90 °C, 150 °C and 210 °C, respectively. The demonstrated superior selectivity opens the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • Au, i.e., ca. 1.5 × 108 V/m) [35][36]. At the Au–Bi2Se3 interface the oxidation of Bi2Se3 can occur accompanied by the formation of non-conductive bismuth oxides (optical Eg = 3.31 eV for a 60 nm BiOx film [58]). Typically, the thickness of surface oxide layers is much lower (of the order of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • Besòs, Catalonia, Barcelona, 08019, Spain 10.3762/bjnano.10.136 Abstract This work is an investigation of the properties of semiconductor materials based on metal oxides, their catalytic properties, and their application as gas sensors, which were shown to exhibit high sensitivity, stability, and
  • ) the binding energy was in good agreement with the binding energy in the reference sample (487.1 and 530.9 eV, respectively). The core level binding energy in the wire sample was at lower values of 486.6 (Sn 3d5/2) and 530.4 (O 1s). These values were also observed on natural oxides formed on pure
  • , powder particles may contain noticeable amounts of oxygen vacancies in their volume. This assumption moves the electronic structure of SnO2 powder particles close to the bulk (core) of natural SnO2-x oxides as confirmed by the XANES Sn M4,5 results (see Figure 7). After calcination, followed by
PDF
Album
Full Research Paper
Published 08 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • considered the most extensively studied solid among the diverse transition-metal oxides and transition-metal chalcogenides investigated with that focus over the last decades. However, TiO2 has disadvantages such as limited activity together with a reduced sensitivity to sunlight. Hence, alternative
  • metal oxides exhibit a large exciton binding energy, large piezoelectric constants and strong photoluminescence. This is of interest not only for applications as photocatalysts but also as sensors, solar cell devices, disinfectants, and cosmetics [137][138]. As discussed above, the dispersion of the
  • decrease in the bandgap values by doping with Ag, Pd and other transition metals such as Zr, W, Ce, Sn, Sb and In improve the photoactivity efficiency [140]. Alternatively, combination of TiO2 and ZnO with other metal oxides leads to mixed oxide NPs, including the TiO2–ZnO compositions, which exhibit
PDF
Album
Review
Published 31 May 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • of the commercial felts (400 °C, up to 30 h) [7]. Also acid treatment [8], electrochemical activation [9], catalytic decoration with metal oxides [10][11], as well as methods to increase the surface area of the felts [12][13] have been reported as possible ways to obtain enhanced activity. Several
PDF
Album
Full Research Paper
Published 28 May 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • , and consequently, the lattice strain. It also appears that beyond an Sr content of ≈60 atom %, the MLC lattice becomes unstable and new modes >680 cm−1 appear, which is typical for metal oxides. DFT calculations of the pristine LaS–TaS2 and the SrxLa1−xS–TaS2 MLC bulk alloys were undertaken. Overall
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • electrocatalyst used for the reaction. The most commonly used electrocatalyst to supply faster kinetics and a four-electron pathway are platinum-based materials [3][4], which are costly and may assume up to 50% of the total cost of a fuel cell [5]. Transition metals [6][7], metal oxides [8][9] and carbon
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • assays indicated the necessity of using additional methods for the examination of the antioxidant properties. γ-Fe2O3 nanoparticles The advantages of iron oxides in biomedical applications include biocompatibility, excellent magnetic properties, and the possibility to modify the surface with reactive
PDF
Album
Full Research Paper
Published 20 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • , the samples were heated to 650 °C at a rate of 50 °C/min, during which the Ni film was cleaned from oxides and impurities. Afterwards, acetylene was fed into the chamber while adjusting the C2H2/Ar mixture to keep the pressure constant at 12 mTorr. The samples were exposed to this ambient for 5 min
PDF
Album
Full Research Paper
Published 29 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • made in the synthesis of graphene oxide nanoparticles and their use in medicine, so there is an urgent need to look at the safety and efficacy of these particles in vivo. It has been observed that engineered nanomaterials, e.g., from metals or metal oxides, have the potential to induce toxicity by
PDF
Album
Full Research Paper
Published 18 Apr 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • , Switzerland 10.3762/bjnano.10.88 Abstract Properties of metal oxides, such as optical absorption, can be influenced through the sensitization with molecular species that absorb visible light. Molecular/solid interfaces of this kind are particularly suited for the development and design of emerging hybrid
  • semiconductor TiO2 has become one of the most extensively studied metal oxides, especially in the context of scanning probe microscopy (SPM) [1]. The working principle of an n-type DSSC, which is shown in Figure 1a, relies on the functionalization of TiO2 surfaces with dye molecules enabling the absorption of
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • activity; Introduction Nitrogen oxides, NOx (x = 1, 2), contribute to acid rain, photochemical smog, greenhouse effect and ozone depletion [1][2][3]. The selective catalytic reduction of NO with NH3 (SCR), as a commercialized NOx abatement technology, has received a great deal of attention [4][5]. However
  • , only a weak peak of MnO2 (PDF#53-0633) can be observed when the loading was greater than or equal to 4%, whereas no diffraction peaks of metal oxides could be found, suggesting the formation of amorphous metal oxide phases. Amorphous catalytic materials are conducive to SCR activity [19], which is also
  • , also verifying the generation of metal oxide catalysts on the CNT surface. The EDX spectrum (Figure 3d) shows signals of Mn, Cu, Fe, O and C. Clear lattice fringes of the metal oxides cannot be observed in the HRTEM images, indicating the generation of amorphous materials, which is consistent with the
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

Periodic Co/Nb pseudo spin valve for cryogenic memory

  • Nikolay Klenov,
  • Yury Khaydukov,
  • Sergey Bakurskiy,
  • Roman Morari,
  • Igor Soloviev,
  • Vladimir Boian,
  • Thomas Keller,
  • Mikhail Kupriyanov,
  • Anatoli Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2019, 10, 833–839, doi:10.3762/bjnano.10.83

Graphical Abstract
  • sapphire (Al2O3) substrate. Before the deposition the substrates were etched by an argon ion beam inside the chamber. The targets Nb(99.99%) and Co(99.99%) were presputtered to remove metallic oxides and contamination absorbed on the surfaces. Additionally, immediately before deposition of the next layer
PDF
Album
Letter
Published 09 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • latter group, nanostructures of metals [38], metal oxides (including iron oxides) [39], and metal chalcogenides [40][41] were studied. Tungsten oxides [42] and molybdenum oxides [43] were studied, as well as their disulfides. The disulfides were tested mainly in the forms of nanosheets [44], nanoflakes
  • cm−1 is characteristic of iron oxides, and represents the stretching vibration of Fe–O bond [53][54]. The peaks at 1640 cm−1 and 3400 cm−1 originate from interlayer water: the former is assigned H–O–H bending vibrations, and the latter to O–H stretching vibrations [53][54]. The peak at around 820 cm
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • specific capacity. Nanoflower MoS2/reduced graphene oxides composites exhibited a high specific capacity (1225 mAh/g) and an excellent cycling performance (680 mAh/g) after 250 cycles [19]. MoS2 nanoparticles have been used as a starting material for the synthesis of Li–S battery cathodes, since Li2S and
PDF
Album
Full Research Paper
Published 26 Mar 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • oxides in photocatalysis [30][33] and as electrodes for lithium-ion batteries [12][18], or for protective and passivating layers [28][32][35]. In this contribution, an alternative method was adopted for the formation of Zn-alkoxide layers. While ALD is known to deliver pure dense ZnO, applied in many
  • , the chemical composition of the Zn-alkoxide layers was controlled. In the literature, a C-content up to 7% was shown for oxides [41], sufficient to define these layers as Zn alkoxide or “zincone”-like. The effect of the combination of plasma exposure time and post-deposition calcination temperature on
  • the formation of porosity was investigated with ellipsometric porosimetry (EP), already shown suitable for the determination of porosity in hybrid and polymer-derived oxides [12][18][29][42][43]. In the literature, few contributions investigate the transformation of zinc-based alkoxides into porous
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • oxides, to molecules adsorbed at surfaces and in porous media. In particular the vdW-DF-cx functional can reliably describe both the molecular adhesion on silver and the Ag bulk structure [56]. A correct geometric model for both molecule and metallic slab represents a major advantage in the study of
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • sulfur loading is essential for the practical implementation of Li–S batteries [5][6][7]. To overcome the above-mentioned challenges in Li–S batteries, many strategies have been proposed [8][9][10][11][12]. For example, metal oxides, such as TiO2, ZnO, MnO2, and SiO2, were reported to provide active
  • sites for strong S–metal bonding that have been reported to suppress the shuttle effect in polysulfides [13][14][15][16]. Moreover, designing metal oxides into various unique morphologies, e.g., hollow structures, can also provide a physical (or structural) confinement for sulfur [17]. Metal-oxide
  • sulfur loading [24][25]. Since sulfur is the major active ingredient in the Li–S cathode, adding more non-sulfur components, such as metal oxides, in the cathode will result in a lower specific capacity. Therefore, the present study will focus on the development of a pure carbon material for the Li–S
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019
Other Beilstein-Institut Open Science Activities