Search results

Search for "substrate temperature" in Full Text gives 109 result(s) in Beilstein Journal of Nanotechnology.

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • under electron impact or getting trapped by newly adsorbing precursor molecules or diffusing molecules. The deposition process is governed by dissociation, desorption, adsorption, and diffusion mechanisms, all of which are influenced by experimental parameters [31] such as substrate temperature
  • reported deposit metal content Cu/C/O was 1:2.3:0.5 [31], while for [Pd(tbaoac)2] in this work, the ratio Pd/C/O was 1:2:0.4, which are almost identical. However, considering the experimental conditions listed in Table 2, the substrate temperature was 30 °C higher for [Cu(tbaoac)2]. This increase in
  • high-aspect ratio nanopillars as reported for [Cu(tbaoac)2] [31]. Nanopillar with [Pd(tbaoac)2] A nanopillar was grown with [Pd(tbaoac)2] by FEBID and a beam current of 700 pA at 20 keV with a substrate temperature of 70 °C and a GIS temperature of 85 °C, as shown in Figure 5. We observed the formation
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • dependence of the qPlus sensor used in these experiments. Figure 4 shows the resonance frequency of the qPlus sensor as a function of the temperature. The thermocouple used to measure this temperature is intended to indicate the substrate temperature on the sample holder. This means that it is situated at a
PDF
Album
Full Research Paper
Published 21 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • °C, and 600 °C using RF sputtering. The thickness of the films has been found to decrease from 940 nm at room temperature to 200 nm at 600 °C with increasing substrate temperature. The structural investigation using grazing incidence angle X-ray diffraction revealed that films deposited at room
  • temperature are amorphous; those deposited at other substrate temperatures are polycrystalline with a cubic zincblende structure and a preferred orientation along the [111] direction. An increase in crystallite size (from 37.60 ± 0.42 Å to 68.88 ± 1.04 Å) is observed with increased substrate temperature. This
  • leads to a reduction in microstrain and dislocation density. The optical studies using UV–vis–NIR spectroscopy reveal that the transmittance of films increases with substrate temperature. Further, the shift in transmittance threshold towards lower wavelengths with substrate temperature indicates that
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • these two conflicting conditions. Two deposits at a substrate temperature of 293 K were fabricated using Cr(C6H6)2 with different beam defocus setting. The AFM images of the deposits fabricated with 1400 and 800 nm wide beams (Figure 3) clearly exhibit an indent resembling a volcano. The size of 800 nm
  • ) of 1400 and 800 nm. Special care was applied with regard to astigmatism correction and aperture alignment, as any aberrations will cause substantial deviations of the deposit shape from a fully symmetric disk-like shape. Depositions were performed at 20 °C substrate temperature and in addition at 10
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • process and the properties of the films, with the most important parameters being substrate temperature, gas pressure, species concentration, and flow velocity [1]. The structural, optical, and electrical properties of the SiOx, more generally known as silicon-rich oxide (SRO), films are determined by the
PDF
Album
Full Research Paper
Published 17 Dec 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • process [14][15]. The impact of substrate temperature, annealing temperature, gas flow rate, and thickness on enhancing the characteristics of Fe3O4 thin films has been examined [15][16][17][18]. The substrates play a crucial role in directing the growth and enhancing the quality of the crystal, resulting
PDF
Album
Full Research Paper
Published 14 Oct 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • , a good deposition rate was observed. After several hours, condensation became visible, which could be avoided by heating the substrate to a temperature of 60 °C. At this substrate temperature, the spatial selectivity of the direct writing was maintained with only a very weak contribution of purely
  • thermal dissociation (cf. Supporting Information File 1, Figure S1, for more details). All deposits shown in the following were obtained for a GIS temperature of 80 °C and a substrate temperature of 60 °C. Depositions with a single dwell spot duration of 5, 30, and 60 min were carried out using 15 kV
  • for experiments to roughly 2 h since the evaporated precursor would start to crystallize at the crucible cap. Heating of the sample was realized with a Kleindiek MHS (Micro Heating Stage), which allowed us to keep the substrate temperature constant at 60 °C throughout the whole experiment. The
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • thickness and some morphological properties of the deposited nanostructured film can be controlled by adjusting deposition time, substrate temperature, and deposition rate. The response of biological surfaces to non-biological materials The first challenge in developing biomedical implants is related to
PDF
Album
Review
Published 16 Aug 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • without affecting the bulk of the layer. After that, the Pb layer and subsequent layers of the SSV structure were deposited at the substrate temperature of Tsub ≈ 150 K. Such low Tsub was necessary to obtain a smooth Pb layer [44] and to form the I2 layer. A similar oxidation procedure was used again to
  • its deposition, thereby, forming an insulating magnetic interlayer at the S/F interface. We consider an oxidation of the Pb layer to be unlikely because it was deposited at a low substrate temperature and exposed to a very low atmospheric pressure for a very short time, as specified above. According
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • °C nor 150 °C was reached under the irradiation conditions in the present experiments on the macroscopic level. The samples are placed on an aluminum block, and even at the highest fluences the substrate temperature is below 50 °C. The observed material evaporation resulting in the loss of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • establish a good thermal contact during metal deposition to prevent the resist mask from melting as the substrate temperature is above the glass transition temperature of the resist. Ion beam etching The IBE process (Figure 6) is as follows: The first step is to deposit Py on the substrate; then a negative
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • . Suitable evaporation temperatures for the SnI4 precursor as well as the relationship between growth per cycle and substrate temperature were determined. Crystal growth in the films in the temperature range of 225–600 °C was identified. Spectroscopic analyses revealed low amounts of residual iodine and
  • at the early stage of the ALD process (Figure 4). The highest GPC of the films was obtained at a substrate temperature of 300 °C (Figure 4). Obviously, there was no significant temperature window for saturation [20], that is, the so-called ALD window, in any temperature range. This may be related to
  • increasing the substrate temperature. Hence, during the purge period after the metal precursor pulse, one could record a decrement in the mass adsorbed on the surface in the present study (Figure 2), as well as in the earlier studies on TiI4-based ALD of TiO2 [21]. The decrement of the mass adsorbed during
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • contamination [16]. Thermal ALD processes operate usually at temperatures higher than 150 °C [17][18][19][20][21]. Characteristic for ALD processes, the growth rate is mainly independent of the substrate temperature in a specific temperature range, often denominated as ALD window. Within this range, the
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • magnetic properties of the spin nanocomposite, whose appearance and structure are demonstrated in Figure 3а. To investigate the magnetic properties of nanomaterials, the substrate temperature was set in the range of niobium nanofilm superconductivity mode operation at 5 K. Regarding the problem of nanofilm
  • studies of magnetic properties and nanofilm deposition mechanisms, the substrate temperature was maintained using a Nose–Hoover thermostat. Thus, at the initial stage of studying magnetic characteristics, the spin behavior of only cobalt atoms was analyzed for two calculation variants. In the first case
PDF
Album
Full Research Paper
Published 04 Jan 2023

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • measurements and for modeling by ab initio calculations. Periodic and compact films are generally obtained when the molecules possess enough surface mobility, that is, when the diffusion energy (Ed) is low compared to the thermal energy kBT, where T is the substrate temperature and kB is the Boltzmann constant
PDF
Album
Full Research Paper
Published 30 Aug 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • increased optical transmission [10][20][21]. In the magnetron sputtering process, it is possible to influence the properties of deposited films by varying the composition of the sputtering gas atmosphere, the total gas pressure, substrate temperature and bias, the target–substrate distance, the target power
PDF
Album
Full Research Paper
Published 31 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • the process. It can be assumed that the substrate temperature did not exceed a temperature of 373 K. Each magnetron was powered with a separate MSS2 power supply from Dora Power System. The applied power supply allowed to obtain a maximum power of up to 2 kW in the unipolar pulsed DC mode. The power
PDF
Album
Full Research Paper
Published 24 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • (discussed below), the formation of chemical bonds between, for instance, oxygen and deposited metal atoms, may occur and contribute to the increase of the amount of heat released on the surface, too. Thornton reported a substrate temperature in the range of 150 °C when measuring heat fluxes during magnetron
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • a lower value of fractal dimension is more effective in sensing NO2 gas and lowers the optimum operating temperature. Chen et al. used pulsed laser deposition for growing different SnO2 thin films by varying the substrate temperature. The obtained films exhibited fractal features [43]. In another
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • oxygen atmosphere (p(O2) = 4 × 10−5 mbar) at a substrate temperature of 910 K. The Ti thickness was monitored by the ion flux of the electron beam evaporator (EFM 3s, Focus GmbH) calibrated by a quartz microbalance. The estimation of the TiO2 thickness from the attenuation of the Sr 3d peak intensity
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • elevated substrate temperature at which the deposition was performed. Arranging the precursors according to their growth rate, in increasing order, the following sequence is obtained: (Cl,Et)AuCl < (Cl,Me)AuCl < (N,Et)AuCl < (Cl,Et)AuI < (Cl,iPr)AuCl < (Cl,Et)AuBr < (Cl,Et)AuCF3. No clear correlation
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • cobalt with an increase in the substrate temperature will decrease the transparency parameter TF and worsen the functional parameters of the layered S/F heterostructure. The implementation of optimal technological processes is required to minimize these defects and imperfections of layered nanosystems
  • technological parameters (substrate temperature, concentration and spatial distribution of the deposited atoms over the interface) on the structure and morphology of the layered nanosystem. Mathematical Model and Theoretical Foundations The formation processes and the structure of multilayer systems for
  • upper atom’s layers of the formed nanolayers. The substrate temperature in each calculation is held constant. The concentration of the deposited atoms was about five atoms per cubic nanometer. The upper boundary of the computational cell was shifted during the transition to the deposition of the next
PDF
Album
Full Research Paper
Published 24 Nov 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • ) at 320 K substrate temperature followed by annealing in 2 × 10−9 mbar O2 at 520 K. To improve ordering, the films were flash-heated to 670 K in UHV. The cleanliness, quality and thickness of the prepared substrates was verified by comparison to low-energy electron diffraction intensity data of
  • crystallographic axes of the Ir(100) substrate are shown. Imaging parameters: (a) U = 0.1 V, I = 0.1 nA; (b) U = 0.5 V, I = 0.5 nA. Low coverage of (a) 1 and (b) 2 deposited on 1BL CoO on Ir(100). 1 was deposited at 220 K substrate temperature and annealed to 300 K while for 2 the substrate temperature during
PDF
Album
Full Research Paper
Published 05 Oct 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • process at a substrate temperature as low as 350 °C using platinum acetylacetonate as a single-source precursor was established for the deposition of a Pt/C electrocatalyst. Platinum in the form of NPs is homogeneously distributed in a carbon support structure due to the simultaneous deposition of both
  • illustrated in Figure 1. For details on the experimental procedures, see the Experimental section. A typical CNW sheet of a sample processed at 8 Pa chamber pressure, 60 sccm argon carrier gas flow rate, and 350 °C substrate temperature is shown in a bright-field transmission electron microscope (TEM
  • properties of the support Figure 4 shows the influence of the carrier gas flow rate (a), pressure (b), and substrate temperature (c) on the CNW morphology. The wall density, as well as the growth rate, was found to increase with increasing gas flow rate, decreasing pressure and increasing substrate
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020
Other Beilstein-Institut Open Science Activities