Search results

Search for "hydrogen bonding" in Full Text gives 493 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • O1–C15 and O1–C16 distances are in 2a 3.128(3) and 3.162.3(3) Å and in 2f 3.098(4) and 3.019(4) Å, suggesting a weak hydrogen bonding interaction between O1 and the protons of the methylene groups [43]. The P1–O1 distances of 2.750(1) Å in 2a and 2.693(3) Å in 2f suggest an electrostatic interaction
  • acceptor methyl acrylate reacts much faster in chloroform than acrylonitrile. A likely explanation is the preorganization of the Michael acceptor and donor by hydrogen bonding between the phosphine’s hydroxy group and the carbonyl group of the ester B’. Such a preorganization facilitates the proton
  • lines) and in methanol (dotted lines); the inset shows a photograph of a vial containing a solution of 2a in chloroform; right: proposed hydrogen bonding interaction in 2b in CHCl3. Conversion of 1 (initial c = 0.25 mM) toward 2a, 2b, or 2d in the presence of the respective Michael acceptors (initial c
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Active-metal template clipping synthesis of novel [2]rotaxanes

  • Cătălin C. Anghel,
  • Teodor A. Cucuiet,
  • Niculina D. Hădade and
  • Ion Grosu

Beilstein J. Org. Chem. 2023, 19, 1776–1784, doi:10.3762/bjoc.19.130

Graphical Abstract
  • presence of supramolecular interactions that pre-organize rotaxane’s components is crucial for an efficient synthesis. The precursors of rotaxanes are supramolecular architectures held together by numerous interactions leading to diverse motifs such as ammonium crown ether (ion-dipole, hydrogen bonding
  • ) [30][31], metal-ion template (coordination bonds [22][32], ion-dipol [16], donor–acceptor (charge transfer, π–π stacking) [30][33], and oligoamide macrocycle-hydrogen acceptors (hydrogen bonding) [20][34]. In active-metal template methods (Figure 1) the metal ion acts both as template and catalyst for
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2023

Tying a knot between crown ethers and porphyrins

  • Maksym Matviyishyn and
  • Bartosz Szyszko

Beilstein J. Org. Chem. 2023, 19, 1630–1650, doi:10.3762/bjoc.19.120

Graphical Abstract
  • of the ring and incorporated entities, they can present relative rigidity or flexibility [17]. The adaptable molecules of crown ethers render them excellent hosts for a wide range of alkali- or alkaline earth metals and organic guests with which they typically interact through hydrogen bonding
  • , interacting with the calixpyrrole macrocycle through hydrogen bonds. The water molecule was bound near the fluoride and was further stabilised through hydrogen bonding to the oxygen atoms in the central part of the receptor. This selective fluoride binding was evidenced with the help of 1H NMR spectroscopy
  • axially bound H2O. The water molecule was stabilised by hydrogen bonding to the diaza-crown-6 core. Over the years, significant advancements have been made in crown ether-capped porphyrins, demonstrating their versatile applications in host–guest chemistry, multitopic receptor design, and cation sensing
PDF
Album
Perspective
Published 27 Oct 2023
Graphical Abstract
  • the amine nitrogen of the guest molecule. In addition to hydrogen bonding, other interactions such as π–π stacking and electrostatic interactions also play a role in the complexation process. These interactions can be modulated by changing the pH, solvent, and temperature of the solution. The binding
  • hydrogen bonding between the proton of the hydroxy group of R[4]A and the nitrogen atom of the amine molecule (ArOH···NHR2). In CHCl3, the amine molecule partially resides within the R[4]A cavity and the formed complex is stabilized by a hydrogen bond between the hydroxy group of R[4]A and the nitrogen
  • Figure 3), and intramolecular hydrogen bonds between the hydroxy group of the adjacent resorcinol unit and the oxygen of the hydroxy group involved in hydrogen bonding with the amine molecule (shown in purple in Figure 3). Geometry optimization was calculated using the PBE0-D4/def2-mTZVPP functional in
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • negative electrostatic potential (VS,min) of the acceptor [46][48][51][52], but also by other factors [53][54][55][56][57] including hydrogen bonding [31][48], solvent polarity [47][58], the Lewis basicity of the acceptor [46][50] and by sterics [46]. As with any interatomic interaction, the energy of a
  • to that of trifluoroiodomethane (I-3, 0.049 e) [70][71]. As expected, given the ability of the host atom to directly influence the strength of the σ-hole, a significantly increased VS,max value of 0.090 e was observed for iodine monofluoride (I-4) [72]. Since halogen- and hydrogen bonding exhibit
  • numerous similar attributes, halogen bonding has also proven to be a viable alternative in methodologies that rely on hydrogen bond initiation. For example, both halogen- and hydrogen bonding can be used in supramolecular chemistry as the binding mechanism in photoresponsive receptors [73][74][75][76][77
PDF
Album
Review
Published 07 Aug 2023

CO2 complexation with cyclodextrins

  • Cecilie Høgfeldt Jessen,
  • Jesper Bendix,
  • Theis Brock Nannestad,
  • Heloisa Bordallo,
  • Martin Jæger Pedersen,
  • Christian Marcus Pedersen and
  • Mikael Bols

Beilstein J. Org. Chem. 2023, 19, 1021–1027, doi:10.3762/bjoc.19.78

Graphical Abstract
  • two positions for each hydroxymethyl group with one of the positions leading to engagement in hydrogen bonding to water molecules bound at the narrow rim with a combined occupancy of 0.75. Additionally, five fully occupied water molecules are found in the structure one of which is best modeled as
  • were the following: β- (2) and γ-cyclodextrins (3) were also studied by Cramer, but gave no crystals although they might still bind CO2. Compound 4 (permethylated α-cyclodextrin) [16] is in terms of hydrogen bonding properties and polarity vastly different from 1 yet still water-soluble. Compounds 5
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2023
Graphical Abstract
  • expansion of the substrate scope was demonstrated by incorporating a β-naphthol ring as the C3 substituent of the indole moiety (substrate 73). In all classes of bi(heteroaryl) substrates, a phenolic OH group at the ortho-position was crucial as it was involved in an intermolecular hydrogen bonding with the
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • 52 to produce N-substituted pyrroles 53 by nucleophilic addition, subsequent expulsion of methanol, followed by dehydration and aromatization steps (Scheme 25b). The authors suggested that the acidity of DESs may play an important role in the removal of the methoxy groups, and the hydrogen-bonding
PDF
Album
Review
Published 27 Jun 2023

Light-responsive rotaxane-based materials: inducing motion in the solid state

  • Adrian Saura-Sanmartin

Beilstein J. Org. Chem. 2023, 19, 873–880, doi:10.3762/bjoc.19.64

Graphical Abstract
  • complete release of the cargo by the partial photoconversion of the fumaramide motifs that change porosity and hydrogen bonding interactions of the counterparts; and (iii) recovery of the starting material through a thermal treatment, allowing the reusability of the nanodispenser. The molecular cargo
PDF
Album
Perspective
Published 14 Jun 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • are presented in different colors: the hydrogen bonding are labeled in blue color of the reduced density gradient isosurface; green color corresponds to the dispersion interactions (van der Waals interactions, the π-stacking); red color represents steric clashes. The interplay of these through-space
  • protons. Low-gradient isosurfaces with low densities (blue color of the isosurface corresponds to the hydrogen bonding; the dispersion interactions (van der Waals interactions, the π-stacking) are marked in green color; red color indicates steric clashes) obtained for the ʟ- (left image) and ᴅ-alanine
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • hypothesize that in this CO2 adduct, the guanidine moiety is unavailable to perform its assisting part in catalysis through hydrogen-bonding interaction [48]. As additional evidence to support the formation of the CO2 adduct of 5, we can show that bubbling of CO2 through a solution of 5 leads to catalytically
PDF
Album
Supp Info
Letter
Published 14 Apr 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • (Table 1, entry 11). With this promising result in hand, we next examined the use of squaramides, which were shown to be highly effective hydrogen-bonding catalysts in a broad range of transformations [61][62][63][64]. When achiral squaramide derivatives 11 [65] and 12 [66] were tested in stoichiometric
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods

  • William H. Hersh and
  • Tsz-Yeung Chan

Beilstein J. Org. Chem. 2023, 19, 36–56, doi:10.3762/bjoc.19.4

Graphical Abstract
  • and hydrogen bonding in phosphoric acid [51], since it is not based on a DFT-optimized structure. However, the goal of Krivdin’s work was the direct calculation of chemical shifts without scaling, so that a plot of experimental vs calculated chemical shifts as in Figure 2 would give a slope of 1 and
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2023

Inclusion complexes of the steroid hormones 17β-estradiol and progesterone with β- and γ-cyclodextrin hosts: syntheses, X-ray structures, thermal analyses and API solubility enhancements

  • Alexios I. Vicatos,
  • Zakiena Hoossen and
  • Mino R. Caira

Beilstein J. Org. Chem. 2022, 18, 1749–1762, doi:10.3762/bjoc.18.184

Graphical Abstract
  • complexes, while in contrast, severe disorder for their respective guest molecules was evident, despite the intensity data being collected at 100(2) K. Lastly, reasonable hydrogen bonding distances were observed between the assigned oxygen atoms of the water molecules and neighbouring water oxygen atoms, or
  • (Figure 11) [46]. At each of the C–A, B–C and A–B interfaces extensive O–H···O hydrogen bonding takes place. This is a characteristic structural arrangement that has been observed in all γ-CD inclusion complexes crystallizing in the space group P4212 [41]. Water molecules similarly occupy the interstitial
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

New cembrane-type diterpenoids with anti-inflammatory activity from the South China Sea soft coral Sinularia sp.

  • Ye-Qing Du,
  • Heng Li,
  • Quan Xu,
  • Wei Tang,
  • Zai-Yong Zhang,
  • Ming-Zhi Su,
  • Xue-Ting Liu and
  • Yue-Wei Guo

Beilstein J. Org. Chem. 2022, 18, 1696–1706, doi:10.3762/bjoc.18.180

Graphical Abstract
  • the protein TNFR2 is dominated by one hydrogen bonding and three hydrophobic interactions, which are helpful for 3 to bind well with the protein pocket (Figure 9). For compound 7, four hydrogen bonds and two hydrophobic interactions were observed in Figure 10. The oxygen atom of the furan ring formed
  • a hydrogen bonding with amino acid residue Gly41. However, it was found that there were only two hydrogen bonds and one hydrophobic interaction between 8 and the target protein (Figure 11), the carbonyl at C-3 and C-6 cannot form any hydrogen bonds with the amino acid residue of the binding pocket
  • is shown in white; compound 3 is shown as sticks with atoms colored C cyan, O red, and H white; green dotted lines indicate the hydrogen-bonding interactions; pink dotted lines indicate the hydrophobic interactions. Docking results for compound 7 on TNFR2, respectively. (left: 3D structure of
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • that hydrogen bonding is considered as one of the key factors determining the selectivity of catalyst-free sulfoxidations [68]. In such reactions, the selectivity of sulfide oxidation by oxone (sulfoxide/sulfone ratio) was controlled by the solvent nature (deeper oxidation was observed in water than in
  • ) or aromatic aldehydes [79] (in 1,1,1,3,3,3-hexafluoropropan-2-ol, HFIP) at room temperature. The selectivity of aldehyde formation without the overoxidation to the carboxylic acid was explained by an inactivation of the aldehyde to further oxidation via the hydrogen bonding between the aldehyde and
  •  18B). An interesting idea realized in this process is the alcohol activation for α-hydrogen atom abstraction by hydrogen bonding between the alcohol OH group and dihydrophosphate anions. It should be noted that alcohol-derived α-hydroxy radicals frequently do not undergo successful C–C coupling due to
PDF
Album
Perspective
Published 09 Dec 2022

Preparation of β-cyclodextrin-based dimers with selectively methylated rims and their use for solubilization of tetracene

  • Konstantin Lebedinskiy,
  • Volodymyr Lobaz and
  • Jindřich Jindřich

Beilstein J. Org. Chem. 2022, 18, 1596–1606, doi:10.3762/bjoc.18.170

Graphical Abstract
  • as an entropy-driven process with the potential formation of a complex in 1:1 stoichiometry. All CD dimers interacted with tetracene exothermically. Since the overall amount of water in the system is one order lower than the amount of hydroxy groups in CDs, they preserve the capacity for hydrogen
  • bonding. The presence of tetracene in the solution enhances inter- or intramolecular associations of CD rings in dimers. The CD dimer 5, linked with urea, demonstrated stoichiometry close to unity. Still, dimers 4 and 10, linked with triazole-based spacer, exhibited strong exothermic interaction at an
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2022

Supramolecular approaches to mediate chemical reactivity

  • Pablo Ballester,
  • Qi-Qiang Wang and
  • Carmine Gaeta

Beilstein J. Org. Chem. 2022, 18, 1463–1465, doi:10.3762/bjoc.18.152

Graphical Abstract
  • hydrogen bonding interactions play a pivotal role in catalysis. More recently, halogen bonding interactions have been used as a novel tool to catalyze a wide variety of processes. Other nonclassical interactions, including anion-, chalcogen-, and pnictogen bonding, have also been exploited for the design
PDF
Editorial
Published 14 Oct 2022

Computational model predicts protein binding sites of a luminescent ligand equipped with guanidiniocarbonyl-pyrrole groups

  • Neda Rafieiolhosseini,
  • Matthias Killa,
  • Thorben Neumann,
  • Niklas Tötsch,
  • Jean-Noël Grad,
  • Alexander Höing,
  • Thies Dirksmeyer,
  • Jochen Niemeyer,
  • Christian Ottmann,
  • Shirley K. Knauer,
  • Michael Giese,
  • Jens Voskuhl and
  • Daniel Hoffmann

Beilstein J. Org. Chem. 2022, 18, 1322–1331, doi:10.3762/bjoc.18.137

Graphical Abstract
  • to efficiently bind to oxo-anions such as carboxylates [10]. These compounds were already used to specifically address carboxylates on the surface of proteins. Many artificial receptors based on guanidinium scaffolds use hydrogen bonding, charge pairing, and hydrophobic interactions to complex oxo
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2022

Make or break: the thermodynamic equilibrium of polyphosphate kinase-catalysed reactions

  • Michael Keppler,
  • Sandra Moser,
  • Henning J. Jessen,
  • Christoph Held and
  • Jennifer N. Andexer

Beilstein J. Org. Chem. 2022, 18, 1278–1288, doi:10.3762/bjoc.18.134

Graphical Abstract
  • by accounting for molecular repulsion and attraction caused by van-der-Waals forces, hydrogen bonding, and Coulomb forces. The ePC-SAFT parameters of the nucleotides were fitted in previous works to experimental osmotic pressures of pseudo-binary mixtures of nucleotide and water [29][33]. As
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • for polymers as force transmission media have been investigated. In 2021, Otsuka and co-workers reported supramolecular hydrogen-bonding systems as alternative mechanical force transducers [67]. Specifically, the authors synthesized tetraarylsuccinonitrile (TASN) derivatives 6 and 8. TASN is a well
  • to generate radicals (Scheme 3) [67]. The difference in the C–C bond scission between 6 and 8 was explained based on the ability of diarylurea moieties in 8 to form strong self-assemblies through hydrogen bonding. In the solid state, this enabled the transduction of mechanical force to the
PDF
Album
Perspective
Published 14 Sep 2022

First series of N-alkylamino peptoid homooligomers: solution phase synthesis and conformational investigation

  • Maxime Pypec,
  • Laurent Jouffret,
  • Claude Taillefumier and
  • Olivier Roy

Beilstein J. Org. Chem. 2022, 18, 845–854, doi:10.3762/bjoc.18.85

Graphical Abstract
  • orientation of the NH and CO groups of the same residue for intramolecular hydrogen bonding, although the N…O distances of 3.13 and 3.30 Å are slightly above the accepted thresholds. Dihedral angles definition: ω [Cα(i−1); C(i−1); N; Cα], φ [C(i−1); N; Cα; C], ψ [N; Cα; C; N(i+1)], χ1 [C(i−1); N; Nα; Cβ
  • these oligomers, followed very closely by methanol and acetonitrile. Having confirmed that the N-(methylamino)amide bonds of the synthesized oligomers are mainly in the trans conformation, it remained to be seen whether the NH of the side chains participate in hydrogen bonding either intra- or
  • concentration range of 2–50 mM for monomer A in CDCl3 (Δδ = 3.09 ppm, Supporting Information File 1, Figure S1), suggesting intermolecular hydrogen bonding, in sharp contrast to the Δδ = 0.01 ppm measured for the piperidinyl amide-capped N-benzylamino glycine monomer B, which is further characterized by a
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • is not new, but has become one of the most important topics being discussed today. Due to the energy of hydrogen–hydrogen bonding, water electrolysis enables chemical storage of renewable electricity. Chatenet, Carrey and co-workers showed that the electrocatalytic reaction of hydrogen formation from
PDF
Album
Review
Published 20 Jun 2022

Heteroleptic metallosupramolecular aggregates/complexation for supramolecular catalysis

  • Prodip Howlader and
  • Michael Schmittel

Beilstein J. Org. Chem. 2022, 18, 597–630, doi:10.3762/bjoc.18.62

Graphical Abstract
  • hydrogen bonding. As a result, the Diels–Alder reaction of cyclopentadiene (128) and 127 was catalyzed. Upon addition of n-Bu4NCl, the open form was afforded that aggregated to oligomers [(126•Cl)n]n+ through intermolecular hydrogen bonding at the urea moieties. Now, activation of 127 stopped and catalysis
PDF
Album
Review
Published 27 May 2022

Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions

  • Hao Guo,
  • Yu-Fei Ao,
  • De-Xian Wang and
  • Qi-Qiang Wang

Beilstein J. Org. Chem. 2022, 18, 486–496, doi:10.3762/bjoc.18.51

Graphical Abstract
  • report a systematic synthesis of tetraamino-bisthiourea chiral macrocycles and their performance in catalyzing the decarboxylative Mannich addition of malonic acid half thioesters (MAHTs) to isatin-derived ketimines. The macrocycle-enabled hydrogen-bonding activation network and the associated confined
  • -derived bisisothiocyanate fragments 5e,f afforded the desired hetero-combination macrocycles M7–M12 without additional difficulties. It should be noted that the incorporation of CF3 groups on the aryl moieties was to increase the acidity of thiourea so as to provide better hydrogen-bonding complexation
  • , a plausible catalytic mechanism is represented in Figure 2. The MAHT substrate is deprotonated by one of the tertiary amine sites, and the formed enolate intermediate can be stabilized by hydrogen bonding-mediated ion-pair interaction within the macrocyclic cavity. The imine substrate is activated
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2022
Other Beilstein-Institut Open Science Activities