Search results

Search for "radical" in Full Text gives 871 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Ring opening of photogenerated azetidinols as a strategy for the synthesis of aminodioxolanes

  • Henning Maag,
  • Daniel J. Lemcke and
  • Johannes M. Wahl

Beilstein J. Org. Chem. 2024, 20, 1671–1676, doi:10.3762/bjoc.20.148

Graphical Abstract
  • the 54% and 63% yield, respectively (Table 1, entries 3 and 4). We observed an increase in Norrish II fragmentation in these cases. The observed diastereoselectivity was poor, supporting the radical character of the ring-closing event. A similar trend was observed when studying the methanesulfonyl (Ms
PDF
Album
Supp Info
Letter
Published 19 Jul 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • (Mg2+-dependent, metal-independent, cobalamin-dependent), common structural folds (class I–V, with class I being the largest group, characterised by the Rossmann fold) [58], or catalytic mechanism (SN2 mechanism, radical mechanism, Figure 3) [59]. This review categorises RiPP MTs based on the acceptor
  • atom, describing O-, N-, C-, and S-MTs; halide MTs have not (yet) been identified in RiPP pathways. The enzymes described below are either conventional SAM-dependent MTs or radical SAM (rSAM) MTs; rSAM MTs are one subfamily of the large rSAM enzyme superfamily, which encompasses enzymes catalysing a
  • involved in RiPP maturation, all C-MTs described in the following section are classified as rSAM C-MTs. Radical SAM C-methyltransferases Radical SAM enzymes typically contain a conserved CxxxCxxC motif. The cysteine residues of this motif coordinate a [4Fe-4S] cluster. rSAM MTs can be classified based on
PDF
Album
Review
Published 18 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • radicals and ions imparted through delocalisation with the adjacent π-system [13][14][15]. In general, the more stabilised the benzylic radical, the weaker the C(sp3)–H bond, as demonstrated when considering the BDEs of a series of phenyl-substituted methanes (Figure 1B). The changes in BDE correlate with
  • mechanistic strategies, namely, electrophilic, radical and nucleophilic approaches, and highlighted when emerging technologies, such as photo- and electrochemistry effect the desired transformation [22][27]. Review Electrophilic benzylic C(sp3)–H fluorination Base mediated Electrophilic fluorinating reagents
  • excess NFSI, the heterobenzyl fluoride is obtained. In the case of product 3, the authors suggested that the absence of radical clock rearrangement products supported a polar mechanism. Conveniently, when both benzylic and heterobenzylic C–H bonds were present in a substrate, the reaction was selective
PDF
Album
Review
Published 10 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • insights we also carried out our standard reaction (Table 1, entry 14) in the presence of well-established radical traps like TEMPO, di-tert-butylhydroxytoluene (BHT), or 1,1-diphenylethene (DPE). In neither case any influence on the yield was observed, thus ruling out a mechanism involving radical species
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • synthesis; electrophotocatalysis; radical decarboxylation; Introduction Alkylnitriles and their derivatives are widely found in pharmaceuticals and biologically active compounds [1][2][3]. In addition, within the field of synthetic organic chemistry, nitriles are synthetically useful handles that can be
  • different types of aliphatic acids including primary ones could be successfully employed (Figure 1B, reaction 1). The groups of Waser [23] and Gonzalez-Gomez [24] reported the direct conversion of aliphatic acids to the corresponding alkylnitriles by merging photoredox catalysis and radical cyanation
  • have provided innovative strategies, substrates in all of these reaction systems are generally limited to benzylic, α-amino-, and α-oxy aliphatic acids, presumably due to the necessity of stabilized radical intermediates for the following radical cyanation step. We and others have recently demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Synthesis of 4-functionalized pyrazoles via oxidative thio- or selenocyanation mediated by PhICl2 and NH4SCN/KSeCN

  • Jialiang Wu,
  • Haofeng Shi,
  • Xuemin Li,
  • Jiaxin He,
  • Chen Zhang,
  • Fengxia Sun and
  • Yunfei Du

Beilstein J. Org. Chem. 2024, 20, 1453–1461, doi:10.3762/bjoc.20.128

Graphical Abstract
  • ][44][45]. However, the electrophilic thiocyanation of biologically important pyrazoles has been less explored [46][47][48]. Among them, the majority of the reported methods proceed through a radical pathway, with the SCN radical generated by the reaction of the thiocyanate source with a corresponding
PDF
Album
Supp Info
Letter
Published 28 Jun 2024

Synthesis of cyclic β-1,6-oligosaccharides from glucosamine monomers by electrochemical polyglycosylation

  • Md Azadur Rahman,
  • Hirofumi Endo,
  • Takashi Yamamoto,
  • Shoma Okushiba,
  • Norihiko Sasaki and
  • Toshiki Nokami

Beilstein J. Org. Chem. 2024, 20, 1421–1427, doi:10.3762/bjoc.20.124

Graphical Abstract
  • product of monomer 6. The proposed mechanism is shown in Scheme 2. Anodic oxidation of thioglycoside 6 generated radical cation 11, which was converted to glycosyl triflate 12. 1,6-Anhydrosugar 7 was produced via 4C1-to-1C4 conformational change of the pyran ring to generate cation intermediate 13
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • photocatalysts, transition-metal photoredox catalysts, and metallaphotocatalysts to produce acyl and alkyl radicals driven by visible light. Keywords: acyl radical; alkyl radical; sustainable catalysis; visible light; Introduction The growing awareness of the necessity for sustainable developments has been
  • heightened by the current energy crisis and the adverse impacts of industrialization. The development of green and energy-efficient methods in organic chemistry that use renewable sources of starting materials is considered highly sustainable [1][2][3]. Radical reactions have profound applications in organic
  • synthesis [4][5][6][7][8][9]. In the context of sustainable catalysis, visible-light-mediated chemistry is becoming a prominent viable option for radical transformations in the synthesis of biologically useful compounds due to the energy efficiency and environmental friendliness [10][11]. Recently, the
PDF
Album
Review
Published 14 Jun 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • Kosuke Yamamoto Kazuhisa Arita Masami Kuriyama Osamu Onomura Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan 10.3762/bjoc.20.116 Abstract The radical hydroarylation of alkenes is an efficient strategy for accessing linear alkylarenes with
  • that a reductive radical-polar crossover pathway is likely to be involved in this transformation. Keywords: aryl halides; C–C bond formation; electroreduction; radicals; visible light; Introduction Alkene hydroarylation is an attractive method for the construction of alkylarenes, which serve as
  • a hydride donor [5][6][7][8]. On the other hand, aryl radical-involved hydroarylation would be a promising alternative for the synthesis of alkylarenes with high anti-Markovnikov selectivity [9][10]. Aryl halides have received increased attention as ideal radical precursors because of their
PDF
Album
Supp Info
Letter
Published 10 Jun 2024

Phenotellurazine redox catalysts: elements of design for radical cross-dehydrogenative coupling reactions

  • Alina Paffen,
  • Christopher Cremer and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2024, 20, 1292–1297, doi:10.3762/bjoc.20.112

Graphical Abstract
PDF
Album
Supp Info
Letter
Published 04 Jun 2024

Mechanistic investigations of polyaza[7]helicene in photoredox and energy transfer catalysis

  • Johannes Rocker,
  • Till J. B. Zähringer,
  • Matthias Schmitz,
  • Till Opatz and
  • Christoph Kerzig

Beilstein J. Org. Chem. 2024, 20, 1236–1245, doi:10.3762/bjoc.20.106

Graphical Abstract
  • catalyst in the sulfonylation/arylation of styrenes and as a triplet sensitizer in energy transfer catalysis. The singlet lifetime is sufficiently long to exploit the exceptional excited state reduction potential for the activation of 4-cyanopyridine. Photoinduced electron transfer generating the radical
  • 0.34, is essentially non-reactive under our conditions. Cyanopyridine- and sulfinate-derived radicals are produced in equal concentrations in the catalytic cycle, suggesting that radical coupling is indeed the final reaction step to give the stable sulfonylation/arylation product. The triplet of Aza-H
  • potentials of Aza-H and the substrates and initial steady-state fluorescence quenching experiments (Scheme 1, left), but detailed mechanistic insights and direct evidence of the transient radical ions could not be obtained yet [45]. Figure 1A illustrates the absorption and emission spectra of Aza-H in MeCN
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2024

Competing electrophilic substitution and oxidative polymerization of arylamines with selenium dioxide

  • Vishnu Selladurai and
  • Selvakumar Karuthapandi

Beilstein J. Org. Chem. 2024, 20, 1221–1235, doi:10.3762/bjoc.20.105

Graphical Abstract
  • similar mechanism may be assumed for the formation of the other oxamides 9 and 13. Mechanism for the formation of 2,5-bis((2-methoxyphenyl)amino)cyclohexa-2,5-diene-1,4-dione (10) Generally, formation of polyaniline occurs through a radical mechanism. Such a radical mechanism is relevant for the formation
  • of quinones having exceptional radical-stabilizing abilities. The best example in nature is the radical pathway in the catechol oxidation process [56][57][58]. The structure of o-anisidine resembles catechol as it has two adjacent electron-donating functions (NH2 and OMe). For o-anisidine, the amine
  • radical resulting from reaction of o-anisidine with SeO2 is stabilized by resonance (Scheme 7). It combines with the hydroxyl radical and undergoes subsequent oxidation to give 2-methoxycyclohexa-2,5-diene-1,4-dione. This iminoquinone upon hydrolysis gives 2-methoxycyclohexa-2,5-diene-1,4-dione, and the
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Cofactor-independent C–C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis

  • Jinmin Gao,
  • Liyuan Li,
  • Shijie Shen,
  • Guomin Ai,
  • Bin Wang,
  • Fang Guo,
  • Tongjian Yang,
  • Hui Han,
  • Zhengren Xu,
  • Guohui Pan and
  • Keqiang Fan

Beilstein J. Org. Chem. 2024, 20, 1198–1206, doi:10.3762/bjoc.20.102

Graphical Abstract
  • -dependent reactions of AlpJ-family oxygenases. Furthermore, the AlpJ- and JadG-catalyzed reactions of CR1 could be quenched by superoxide dismutase, supporting a catalytic mechanism wherein the substrate CR1 reductively activates molecular oxygen, generating a substrate radical and the superoxide anion O2
  • bond cleavage, ring opening, and rearrangement reactions, yielding the respective products. Furthermore, the reactions of 8 catalyzed by JadG and AlpJ could be quenched by superoxide dismutase (SOD), supporting a catalytic mechanism involving the generation of a substrate radical and the superoxide
  • substrates to activate molecular oxygen, leading to the generation of a substrate radical and the superoxide anion O2•− [29][33][37]. The well-established superoxide trapping agent superoxide dismutase (SOD) has demonstrated significant inhibition of the NMO-catalyzed monooxygenation reaction [29]. To probe
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Two-fold addition reaction of silylene to C60: structural and electronic properties of a bis-adduct

  • Masahiro Kako,
  • Masato Kai,
  • Masanori Yasui,
  • Michio Yamada,
  • Yutaka Maeda and
  • Takeshi Akasaka

Beilstein J. Org. Chem. 2024, 20, 1179–1188, doi:10.3762/bjoc.20.100

Graphical Abstract
  • perpendicularly. Unfortunately, the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry of 3 afforded no molecular ion peak expected for adducts derived from Dip2Si and C60 while a base peak at m/z 720 due to C60 was observed probably because of the low stability of radical
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • control studies with Hg and TEMPO indicated that the reactions were homogeneous and did not proceed through a radical pathway. Synthesis of heterocycles via C–C and C–N bond formation In 2016, Beller and co-workers reported an intramolecular cyclization using 2-(2-aminophenyl)ethanol for the synthesis of
PDF
Album
Review
Published 21 May 2024

Light on the sustainable preparation of aryl-cored dibromides

  • Fabrizio Roncaglia,
  • Alberto Ughetti,
  • Nicola Porcelli,
  • Biagio Anderlini,
  • Andrea Severini and
  • Luca Rigamonti

Beilstein J. Org. Chem. 2024, 20, 1076–1087, doi:10.3762/bjoc.20.95

Graphical Abstract
  • considering the most atom-economical options, namely chlorine and bromine, the latter typically exhibits some advantages over the former. These include: (i) better regioselectivity in radical processes, attributed to the lower bond enthalpy of H–Br (88 kcal/mol) compared to H–Cl (103 kcal/mol) [17], (ii
  • functionalisation on the aromatic ring when used in the dark [20]. A classic example is the bromination of toluene with molecular bromine. When the system is exposed to light (right side of Figure 1), a radical mechanism is initiated by Br• coming from Br2 homolysis. Propagation involves the reversible abstraction
  • of a benzylic hydrogen atom from the substrate by Br•, to give HBr and a structure-stabilised carbon-centred radical, which may react with Br2 to give the brominated product, thus regenerating Br• that is able to sustain the chain process. In the absence of light (left side of Figure 1), the reaction
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions

  • Naoki Miyamoto,
  • Daichi Koseki,
  • Kohei Sumida,
  • Elghareeb E. Elboray,
  • Naoko Takenaga,
  • Ravi Kumar and
  • Toshifumi Dohi

Beilstein J. Org. Chem. 2024, 20, 1020–1028, doi:10.3762/bjoc.20.90

Graphical Abstract
  • photoinitiated radical polymerizations [7][8]. Consequently, there exists a growing interest in the development of more convenient synthetic routes for these compounds, facilitating the creation of structurally novel diaryliodonium(III) salts. The counterions of diaryliodonium(III) salts play a crucial role in
PDF
Album
Supp Info
Letter
Published 03 May 2024

Spin and charge interactions between nanographene host and ferrocene

  • Akira Suzuki,
  • Yuya Miyake,
  • Ryoga Shibata and
  • Kazuyuki Takai

Beilstein J. Org. Chem. 2024, 20, 1011–1019, doi:10.3762/bjoc.20.89

Graphical Abstract
  • part in the arbitrarily shaped edges results in the emergence of radical π-electron states called “edge states”, which are spatially localized at the edge site. The edge states appear at the Dirac point at which two linear conduction (anti-bonding) π*- and valence (bonding) π-bands touch each other in
  • the electronic energy bands of graphene. Since the Fermi level is located at the Dirac point for neutral nanographene, edge states are half-filled like singly occupied molecular orbitals (SOMO) of radical states. Namely, nanographene sheets become magnetic and chemically active due to the edge states
PDF
Album
Supp Info
Letter
Published 02 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • interesting method toward indole-3-yl aryl ketones was reported by Zhang et al. Considering the ability of the aryldiazonium salts to act as aryl radical source, in presence of the suitable metal catalyst or taking advantage of photocatalysis, they decided to perform a direct carbonylation of indoles with
PDF
Album
Review
Published 30 Apr 2024

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • itself accessible in good yields from allyl chloride 1 using a route based on that reported by Schlüter [28]. Bifunctional 1,2-BCP (±)-4 bearing orthogonally protected alcohol functionalities was obtained from 3a through a three-step sequence of strain-release radical ring-opening with iodochloromethane
  • (±)-30. In a related strategy, Procter and co-workers prepared 1,2-BCHs (±)-33a–e from BCBs 32 via a SmI2-catalysed radical relay alkene insertion (Scheme 3C) [35]. This approach relied on single-electron reduction of the ketone moiety and ring-expansion from the ketyl radical anion. Electron-deficient
  • haloalkylation with alkyl iodides (Scheme 14A) [27][47]. This reaction can be performed either under photoredox catalysis conditions or without the need for an initiator, depending on the used alkyl iodide. For selected examples, the radical initiator Et3B could also be used. Activation by photoredox catalysis
PDF
Album
Review
Published 19 Apr 2024

Confirmation of the stereochemistry of spiroviolene

  • Yao Kong,
  • Yuanning Liu,
  • Kaibiao Wang,
  • Tao Wang,
  • Chen Wang,
  • Ben Ai,
  • Hongli Jia,
  • Guohui Pan,
  • Min Yin and
  • Zhengren Xu

Beilstein J. Org. Chem. 2024, 20, 852–858, doi:10.3762/bjoc.20.77

Graphical Abstract
  • amount of the C-9 epimerization product 11 might be explained by a competing radical oxidation of the organoborane intermediate IM-16 by oxygen when the oxidation step is opened to air [32][33]. On the other hand, an alternative mechanism for the formation of 11 involving the oxidation of the 9-epi-IM-16
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins

  • Ke Jiang,
  • Cheng Pan,
  • Limin Wang,
  • Hao-Yang Wang and
  • Jianwei Han

Beilstein J. Org. Chem. 2024, 20, 841–851, doi:10.3762/bjoc.20.76

Graphical Abstract
  • -positions to the ester group were all well-tolerated (Table 3). To gain further insights into the reaction mechanism, we conducted control experiments. Given the utility of diaryliodonium salts in radical chemistry, we introduced 2 equivalents of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or 2 equivalents
  • of butylated hydroxytoluene (BHT) into the template reaction. Remarkably, we observed that the desired product was not formed, suggesting a radical pathway. Subsequently, we investigated the bond-formation sequence in the benzocyclization reaction. A possible intermediate of 3al’ was prepared and
  • tested in the reaction under the standard conditions, however, product 3aa was not obtained. Based on the literature known results and the experimental evidences [35][36], we proposed a plausible reaction mechanism (Scheme 2b). The reaction started with the formation of radical intermediate A from
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • hydrochlorinations, followed by metal-promoted radical hydrochlorinations, and concludes with a brief overview of recent anti-Markovnikov hydrochlorinations. Keywords: addition reactions; alkenes; alkyl chlorides; hydrochlorination; Markovnikov; Introduction The hydrochlorination of alkenes dates back to its
  • on metal-catalyzed radical hydrochlorinations [11] and anti-Markovnikov hydrochlorination reactions, highlighting the ongoing challenges in achieving a simple addition of HCl across a simple double bond. During our literature review for this article, we identified two other significant reviews
  • simultaneous mechanism [15][16][17][18][19]. 2) Radical hydrochlorinations: These reactions involve the in situ formation of a carbon-centered radical, which is then trapped by an appropriate chlorine source. 3) anti-Markovnikov products: This category describes a new field in hydrochlorination reactions
PDF
Album
Review
Published 15 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • discovery and development of the synthesis of homopropargylic azides by the azido-alkynylation of alkenes. Initially, a strategy involving SOMOphilic alkynes was adopted, but only resulted in a 29% yield of the desired product. By switching to a radical-polar crossover approach and after optimization, a
  • , greatly increasing the molecular complexity of the starting substrate. Using radical chemistry would lead to a regioselective addition of azide radicals to the alkene, forming selectively the most stabilized C-centered radical. A prominent method for the generation of azide radicals relies on hypervalent
  • iodine reagents [15][16]. Azidobenziodoxolone, also known as Zhdankin reagent, has often been used under thermal or photochemical conditions to generate the desired azide radical in a controlled fashion. However, recent safety issues arising from the shock and impact sensitivity of the compound led to
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Organic electron transport materials

  • Joseph Cameron and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2024, 20, 672–674, doi:10.3762/bjoc.20.60

Graphical Abstract
  • react with acceptors to produce reducing radical species, capable of reducing organic electron transport materials with a low electron affinity [4][5]. It is not only in modifying the molecular structure to improve the electron accepting ability that there is innovation in new organic electron transport
PDF
Album
Editorial
Published 28 Mar 2024
Other Beilstein-Institut Open Science Activities