Search results

Search for "benzoquinone" in Full Text gives 124 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of the aggregation pheromone of Tribolium castaneum

  • Biyu An,
  • Xueyang Wang,
  • Ao Jiao,
  • Qinghua Bian and
  • Jiangchun Zhong

Beilstein J. Org. Chem. 2025, 21, 510–514, doi:10.3762/bjoc.21.38

Graphical Abstract
  • has been found to damage 246 grain commodities, especially starchy products [2][3]. In addition, the adult T. castaneum secretes carcinogenic methyl-1,4-benzoquinone and ethyl-1,4-benzoquinone to inhibit the microorganisms and the predators [4][5]. Therefore, T. castaneum infected stored products are
PDF
Album
Supp Info
Letter
Published 06 Mar 2025

Synthesis, structure, ionochromic and cytotoxic properties of new 2-(indolin-2-yl)-1,3-tropolones

  • Yurii A. Sayapin,
  • Eugeny A. Gusakov,
  • Inna O. Tupaeva,
  • Alexander D. Dubonosov,
  • Igor V. Dorogan,
  • Valery V. Tkachev,
  • Anna S. Goncharova,
  • Gennady V. Shilov,
  • Natalia S. Kuznetsova,
  • Svetlana Y. Filippova,
  • Tatyana A. Krasnikova,
  • Yanis A. Boumber,
  • Alexey Y. Maksimov,
  • Sergey M. Aldoshin and
  • Vladimir I. Minkin

Beilstein J. Org. Chem. 2025, 21, 358–368, doi:10.3762/bjoc.21.26

Graphical Abstract
  • -methylquinazolinones [3], 2-methylbenzoxazinones [4], and 2-methylbenzoxa(thia)zoles [5] the interaction with sterically hindered 1,2-benzoquinones and 3,4,5,6-tetrachloro-1,2-benzoquinone proceeds with the expansion of the o-quinone ring and results in 2-hetaryl-substituted 1,3-tropolones 1 (Scheme 1), which exhibit
  • is to obtain heterocyclic indole compounds conjugated with a 1,3-tropolone moiety. The variability of the products of acid-catalyzed reactions in the series of 2,3,3-trimethylindolenine with 1,2-benzoquinone derivatives depends on the nature of the substituents in the 1,2-benzoquinone. Thus, the
  • interaction of 2,3,3-trimethylindolenine with 3,5-di(tert-butyl)-1,2-benzoquinone leads to the formation of indolo[1,2-a]indoline derivatives [23], while the presence of a nitro group in 4,6-di(tert-butyl)-3-nitro-1,2-benzoquinone the reaction with 2,3,3-trimethylindolenine leads to an o-quinone ring
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2025

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • their essential roles in product formation. Optimized conditions comprised the reaction of the quinoline N-oxides 25 (1 equiv) with diaryliodonium tetrafluoroborates 26 (2 equiv) as the arylating agent, 1,4-benzoquinone (BQ) as an additive (2 equiv), the photocatalyst eosin Y (10 mol %), and Cs2CO3 (1
PDF
Album
Review
Published 13 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • authors, the reaction proceeds via hydrogen-atom transfer (HAT) at the benzylic position, mediated by DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone). The proposed mechanism includes two possible pathways: In path A, the benzylic position undergoes HAT to form a benzyl radical, which is then oxidized by
  • molecules. 1.3.6 Pd-assisted anodic oxidation. In 2023, Ackermann and coworkers reported a Pd-catalyzed anodic oxidation for the alkenylation of arenes without the need for directing groups [57]. Using Pd(OAc)2 as the catalyst, 2-methyl-2-(phenylthio)propanoic acid as the ligand, and 1,4-benzoquinone (BQ
PDF
Album
Review
Published 09 Oct 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • -triazole, thiazole, or pyridine were synthesized by the reaction of 3,5-di-tert-butyl-o-benzoquinone or 3,5-di-tert-butyl-6-methoxymethylcatechol with different heterocyclic thiols. The S-functionalized catechols were prepared by the Michael reaction from 3,5-di-tert-butyl-o-benzoquinone and the
  • derivatives are used as ligands in the synthesis of metal complexes (Ni(II), Pd(II), Pt(II), Cu(I), Ag(I) etc.) exhibiting antibacterial and antitumor activity [34]. In most cases, polyfunctional catechol thioethers were obtained by Michael reaction via the interaction of o-, p-benzoquinone and the
  • /prooxidant, and antiradical activity was carried out for the catechols synthesized in this work. Results and Discussion Synthesis The interaction of 3,5-di-tert-butyl-o-benzoquinone with the corresponding thiols in ethanol at room temperature under argon leads to the formation of catechol thioethers 1–3 (69
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • properties make them privileged structures in medicinal chemistry [2]. Benzoquinone and naphthoquinone can exist as ortho-quinone and para-quinone, with the latter considered more stable [5]. Additionally, p- and o-quinones are formed in metabolism of drugs [6] as well as polycyclic aromatic hydrocarbons
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • reaction of mestranol acetate (34) catalysed by a palladium(II) complex, in the presence of p-benzoquinone under carbon monoxide. The authors propose an initial addition of the acetate C=O group onto the triple bond coordinated to palladium, followed by a MeOH attack onto the resulting oxycarbenium, and a
PDF
Album
Review
Published 24 Jul 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • indole derivatives were obtained by catalyzing the reaction with 5 mol % of Pd(tfa)2 (palladium(II) trifluoroacetate) and 1.5 equivalents of p-benzoquinone as oxidant in a 1:5 DMSO/MeOH solvent mixture at a temperature between 0 °C and 15 °C and, for a time between 48 and 120 hours depending on the
PDF
Album
Review
Published 30 Apr 2024

Facile approach to N,O,S-heteropentacycles via condensation of sterically crowded 3H-phenoxazin-3-one with ortho-substituted anilines

  • Eugeny Ivakhnenko,
  • Vasily Malay,
  • Pavel Knyazev,
  • Nikita Merezhko,
  • Nadezhda Makarova,
  • Oleg Demidov,
  • Gennady Borodkin,
  • Andrey Starikov and
  • Vladimir Minkin

Beilstein J. Org. Chem. 2024, 20, 336–345, doi:10.3762/bjoc.20.34

Graphical Abstract
  • structure, 3H-phenoxazin-3-ones can easily be accessed through oxidative couplings of o-aminophenols [3][4] or N-aryl-o-benzoquinone imines [5][6]. Further, they can serve as efficient precursors of pentacyclic N,O-heterocyclic compounds that possess promising properties for application in fluorescent
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2024
Graphical Abstract
  • -dichloro-5,6-dicyano-1,4-benzoquinone, and its homologous compounds have been employed in chemical transformation reactions involving electron-rich alkynes. In particular, a [2 + 2] CA adduct was prepared through the [2 + 2] CA–RE reaction. Studies have shown that the thermal treatment of the [2 + 2] CA
PDF
Album
Review
Published 22 Jan 2024

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • cesium cation with the halogen atom and the activation of the Sn–O bond of the stannylene acetal via a pentacoordinated intermediate with the fluoride anion [110]. The acetylation of the secondary alcohol and the deprotection of the primary alcohol with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • and elimination occurs to give the target coupling product. Liu et al. reported a novel In-catalyzed coupling of benzopyrans with 1,3-dicarbonyl moieties and aryl rings using dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as the oxidant (Scheme 39) [105]. Under the established standard conditions
PDF
Album
Review
Published 06 Sep 2023
Graphical Abstract
  • photosynthesis. It is also noteworthy that the reduced pyridinium compounds resemble Hantzsch esters which are organic reductants commonly used in organic synthesis. Quinones and hydroquinones have also been used in RFBs. Notably, 1,4-hydroquinone and 1,4-benzoquinone were used to create membrane-less RFBs with
  • reductive quenching of Ru(bpy)3 and reduction of photooxidized Ru(bpy)3. Furthermore, quinones have well-studied PCET chemistry [26]. 2,3-Dichloro-5,6-cyano-1,4,hydroquinone, the hydrogenated form of 2,3-dichloro-5,6-cyano-1,4-benzoquinone (DDQ), has the highest oxidation potential of the 3 quinone examples
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Light-responsive rotaxane-based materials: inducing motion in the solid state

  • Adrian Saura-Sanmartin

Beilstein J. Org. Chem. 2023, 19, 873–880, doi:10.3762/bjoc.19.64

Graphical Abstract
  • UMUMOF-(E)-3 due to the decrease of the number of hydrogen bonds interactions between the counterparts, as determined by solid-state 2H NMR. Interestingly, UMUMOF-(E)-3 was employed as a molecular nanodispenser of para-benzoquinone working through a cyclic operation mode which involved three steps
  • (Figure 3c): (i) an uptake of the molecular cargo was firstly accomplished by immersing the metal-organic crystals in a 1.2 M solution of para-benzoquinone in chloroform which leads to the loading of a 9.82% w/w of quinone; (ii) photoirradiation at 312 nm over a period of 8 hours which leads to the
PDF
Album
Perspective
Published 14 Jun 2023

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • Pd(OAc)2 did not dissolve in toluene even with pyridine. As a substitute for TEMPO, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was tried (Table 1, entries 9 and 10) [45]. Although the reactivity was improved compared with the TEMPO catalytic system in Table 1, entries 3–5, the DDQ catalytic system
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • -dicyano-p-benzoquinone (DDQ) and methanesulfonic acid in dichloromethane, the helical structure 7 was obtained in a 72% yield [34]. The possible reason for this incomplete cyclization is the electronic effect of the alkoxy groups. Meanwhile, the methoxy version was also synthesized from precursor 5. The
PDF
Album
Review
Published 30 May 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • of (−)-sclareol (43) [36] as the precursor to a photolabile Barton ester 59. When the latter was irradiated at 250 W in the presence of benzoquinone, a decarboxylated coupling occurred, yielding semiquinone 60, few steps away from the common scaffold 61. Following this protocol, researchers managed
PDF
Album
Review
Published 02 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • necessary (70% yield, 2:1 dr). The desaturation of the enone compound was next examined and while exposure of 13 to oxidant (o-iodoxybenzoic acid (IBX) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)) left the starting materials unchanged, treatment with NaH in the presence of oxygen to induce the
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • application as redox-catalysts [124][125] or photoredox catalysts [30][31] for selective oxidations and also as stoichiometric oxidants [126]. Electron-withdrawing groups are used to increase oxidative properties, the most known examples are 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [126] and 2,3,5,6
  • -tetrachloro-1,4-benzoquinone (p-chloranil). In a typical catalytic cycle, the quinone molecule performs two-electron oxidation to form the hydroquinone, which is then reoxidized by terminal oxidants (Scheme 25). However, radical semiquinone intermediates can also be formed and participate in the oxidation of
PDF
Album
Perspective
Published 09 Dec 2022

Dissecting Mechanochemistry III

  • Lars Borchardt and
  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1454–1456, doi:10.3762/bjoc.18.150

Graphical Abstract
  • ) from an initial mechanical treatment of trichloroheptazine and Na3P, once again highlighting the importance of halogenated organic molecules as building blocks for graphitic heptazine materials (Scheme 4) [8]. Another halogenated molecule, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), proved to be
PDF
Album
Editorial
Published 12 Oct 2022

Derivatives of benzo-1,4-thiazine-3-carboxylic acid and the corresponding amino acid conjugates

  • Péter Kisszékelyi,
  • Tibor Peňaška,
  • Klára Stankovianska,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 1195–1202, doi:10.3762/bjoc.18.124

Graphical Abstract
  • . The use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in 1,4-dioxane afforded the dimer 11a in a slightly better yield of 46% (Scheme 2). For all the prepared benzothiazine derivatives 10 we observed some degree of instability. The derivatives were reasonably stable in the solid state but usually
PDF
Supp Info
Full Research Paper
Published 09 Sep 2022

DDQ in mechanochemical C–N coupling reactions

  • Shyamal Kanti Bera,
  • Rosalin Bhanja and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2022, 18, 639–646, doi:10.3762/bjoc.18.64

Graphical Abstract
  • -Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a commonly known oxidant. Herein, we report that DDQ can be used to synthesize 1,2-disubstituted benzimidazoles and quinazolin-4(3H)-ones via the intra- and intermolecular C–N coupling reaction under solvent-free mechanochemical (ball milling) conditions. In
  • moiety in 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), it was well established as a hydride transfer reagent in various organic reactions [14][15]. Generally, DDQ assists in dehydrogenation reactions in organic synthesis [16]. In this context, various carbon–heteroatom bond formation reactions such
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • 2002, an interesting methodology for menadione synthesis was reported by Kacan and Karabulut (Scheme 5). The authors studied a Diels–Alder reaction, using LiClO4-diethyl ether (LPDE) as a catalyst, 1-ketoxy-1,3-butadiene 28 as a diene and 2-methyl-1,4-benzoquinone (29) as dienophile. By this method
  • )ruthenium(II) dichloride as catalyst. Then, a BF3·OEt2-catalzyed migration of the methyl group to the C-2 position and removal of the tert-butoxy group in a 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)/toluene mixture afforded 2-methyl-1,4-benzoquinone (29). Finally, a Diels–Alder reaction was performed with
PDF
Album
Review
Published 11 Apr 2022

1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis

  • Ruan Carlos B. Ribeiro,
  • Patricia G. Ferreira,
  • Amanda de A. Borges,
  • Luana da S. M. Forezi,
  • Fernando de Carvalho da Silva and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 53–69, doi:10.3762/bjoc.18.5

Graphical Abstract
  • catecholamines and other compounds, but they can also be ingested as exogenous products of air and water. The most common quinones, such as benzoquinone, naphthoquinone, anthraquinone, and phenanthrenequinone, can be formed by incomplete combustion or photooxidation of their respective polycyclic aromatic
PDF
Album
Review
Published 05 Jan 2022
Other Beilstein-Institut Open Science Activities