Search results

Search for "formaldehyde" in Full Text gives 154 result(s) in Beilstein Journal of Organic Chemistry.

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • /bjoc.21.45 Abstract Formaldehyde emerges as a cornerstone in multicomponent reactions, mainly prized for its robust reactivity. Yet, alongside these beneficial traits, this highly reactive C1-building block raises concerns, primarily regarding its toxicity. One notable issue is the challenge of
  • controlling the formation of undesired byproducts during its reactions. This review explores alternative C1-building blocks that serve as surrogates for formaldehyde, aiming to mitigate some of the challenges associated with its use in multicomponent reactions. By identifying these alternatives, toxicity
  • concerns and improved reaction control can be addressed, paving the way for more efficient and sustainable synthetic methodologies. Keywords: cascade reactions; formaldehyde surrogates; green chemistry; heterocycles; multicomponent reactions; Introduction Organic chemistry is a mature discipline that has
PDF
Album
Review
Published 13 Mar 2025

Cryptophycin unit B analogues

  • Thomas Schachtsiek,
  • Jona Voss,
  • Maren Hamsen,
  • Beate Neumann,
  • Hans-Georg Stammler and
  • Norbert Sewald

Beilstein J. Org. Chem. 2025, 21, 526–532, doi:10.3762/bjoc.21.40

Graphical Abstract
  • 8 was obtained in good yield of 61% through reductive amination with excess formaldehyde and NaBH3CN as reductant, the selective installation of only one methyl group, providing monomethyl aniline 7, proved to be more troublesome. Either reductive amination using the same protocol, but under strict
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Antibiofilm and cytotoxic metabolites from the entomopathogenic fungus Samsoniella aurantia

  • Rita Toshe,
  • Syeda J. Khalid,
  • Blondelle Matio Kemkuignou,
  • Esteban Charria-Girón,
  • Paul Eckhardt,
  • Birthe Sandargo,
  • Kunlapat Nuchthien,
  • J. Jennifer Luangsa-ard,
  • Till Opatz,
  • Hedda Schrey,
  • Sherif S. Ebada and
  • Marc Stadler

Beilstein J. Org. Chem. 2025, 21, 327–339, doi:10.3762/bjoc.21.23

Graphical Abstract
  • , cells were fixed with 25% formaldehyde and assessed for biomass using CV staining. Methanol (2.5%) served as the solvent control, with MAA as the positive control [22]. Error bars indicate standard deviation among duplicates in two biological repeats (n = 4). Statistical analysis The distinction between
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2025

Three-component reactions of conjugated dienes, CH acids and formaldehyde under diffusion mixing conditions

  • Dmitry E. Shybanov,
  • Maxim E. Kukushkin,
  • Eugene V. Babaev,
  • Nikolai V. Zyk and
  • Elena K. Beloglazkina

Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18

Graphical Abstract
  • generate crotonic condensation adducts of active methylene compounds and formaldehyde at room temperature in the absence of strong acids and bases. The formed adducts were highly reactive intermediates capable of reacting with dienes in a three-component reaction, leading to the formation of Diels–Alder
  • main reaction products. Keywords: aldol condensation; [4 + 2]-cycloaddition; diffusion mixing; formaldehyde; Knoevenagel condensation; three-component reactions; Introduction Formaldehyde is a reactive electrophilic reagent widely used as a C1 building block in multicomponent reactions [1][2][3]. Its
  • adducts of formaldehyde condensation are formed under milder conditions and are highly reactive, which is important for further synthetic transformations. However, due to the high carbonyl reactivity of formaldehyde, its interaction with active methylene compounds is often complicated by polycondensation
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • additive. Some control experiments support a mechanism whose key intermediates are the formation of the iminium ion XIX, originated from aniline with formaldehyde which serves as the C1 building block, and the generation of the cyclic α,β-unsaturated ethers XX by Cu(OTf)2-catalyzed dehydrogenation of the
PDF
Album
Review
Published 14 Jan 2025

Machine learning-guided strategies for reaction conditions design and optimization

  • Lung-Yi Chen and
  • Yi-Pei Li

Beilstein J. Org. Chem. 2024, 20, 2476–2492, doi:10.3762/bjoc.20.212

Graphical Abstract
  • illustrating the data mining and preprocessing steps for chemical reaction datasets. This process includes data collection, filtering, completion, and atom mapping. In the depicted example, formaldehyde, which contributes a carbon atom to the product, is classified as a reactant due to its active involvement
PDF
Album
Review
Published 04 Oct 2024

HFIP as a versatile solvent in resorcin[n]arene synthesis

  • Hormoz Khosravi,
  • Valeria Stevens and
  • Raúl Hernández Sánchez

Beilstein J. Org. Chem. 2024, 20, 2469–2475, doi:10.3762/bjoc.20.211

Graphical Abstract
  • , e.g., polymers and capsules [80]. In that regard, 2,6-dihydroxybenzoic acid is known to also yield inseparable mixtures [9][81]. However, a couple of reports describe successful syntheses with reaction yields ≈40% using 2,6-dihydroxybenzoic acid and formaldehyde under basic conditions [38]. Recently
PDF
Album
Supp Info
Letter
Published 02 Oct 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • intermediate is then reduced with H2 [37]. When synthesising via a reductive ring opening, typically, an N-Fmoc-protected amino acid is condensed with formaldehyde in the presence of p-toluic acid in refluxing toluene to yield the 5-oxazolidinone. Reductive ring opening can be achieved by using an excess of
PDF
Album
Review
Published 18 Jul 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • produce a carboxylic acid (R1CO2H) and a primary alcohol (R1CH2OH). When a mixture of formaldehyde (HCHO) and a non-enolizable aldehyde (R1CHO) is treated with a strong base, the latter is preferentially reduced to the alcohol (R1CH2OH) while formaldehyde is oxidized to formic acid (HCO2H). Herein excess
  • formaldehyde is used as a reductant. This variant is known as the crossed-Cannizzaro reaction. On the other hand, an intramolecular Cannizzaro reaction occurs when both aldehyde groups are present in a single molecule. In this scenario, one aldehyde group is reduced to the corresponding alcohol, while the
  • Cannizzaro reaction commencing from 68. The primary hydroxymethyl functionality in 69 was oxidized to the corresponding aldehyde 70, which was subsequently treated with 37% aqueous formaldehyde and NaOH, to result in a mixture of the gem-hydroxymethyl derivative 72 and the carbamate 71 which led to the spiro
PDF
Album
Review
Published 19 Jun 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • 110 °C for 16 h), moderate to good yields of N-methylamines were produced (Scheme 15). The mechanistic studies suggested that the base activates the complex Mn3. The active catalyst dehydrogenates methanol into formaldehyde and converts nitroarenes to anilines via transfer hydrogenation. The latter
  • then undergo condensation with formaldehyde providing an N-phenylmethanimine intermediate which was confirmed by 1H NMR spectroscopy. In the final step, the imine undergoes hydrogenation with Mn3-b to yield the N-methylated product (Scheme 16). In 2020, Maji et al. synthesized manganese(I) complexes
PDF
Album
Review
Published 21 May 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • use of glyoxals did not provide the desired products. Instead, the respective starting materials were almost quantitatively recovered from the column chromatography purification step. The use of very reactive aldehydes such as formaldehyde and crotonaldehyde also did not provide the GBB adduct
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024

Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  • Zhang Dongxu

Beilstein J. Org. Chem. 2023, 19, 1741–1754, doi:10.3762/bjoc.19.127

Graphical Abstract
  • [44] (Scheme 6). El Kaim and Jia reported a Mannich-type reaction of trifluoroacetaldehyde hydrazones with formaldehyde and aromatic aldehydes to obtain valuable starting materials for the generation of other trifluoromethyl-substituted heterocycles. The study demonstrated that the electron
PDF
Album
Review
Published 15 Nov 2023
Graphical Abstract
  • reduction consumed the sacrificial donor methanol to form formic acid and formaldehyde [56]. This system is interesting for a number of reasons. Rather than intermediate redox mediators shuttling charge between two photocatalytic assemblies, Ishitani, Domen, and co-workers covalently connected the catalytic
  • photocatalytic or electrochemical carbon dioxide reduction. The oxidation product, formaldehyde, can be re-reduced. However, separation of formaldehyde and the carbon dioxide reduction product formic acid would be difficult. Therefore, a logical route for sustainably sourcing methanol would be using this system
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • ligands is that they can also promote the conjugate additions of aryl-based or branched Grignard reagents (Scheme 17) [49]. Further extending this methodology, we have investigated formaldehyde imine equivalents. These kinds of imines are not readily available, but they are highly important synthetic
  • building blocks providing an aminomethyl moiety upon adding nucleophiles. Protected formaldehyde aminals are useful synthetic equivalents to formaldehyde imines. The imine functionality can be unmasked (68) in the reaction medium by Lewis acids such as TiCl4. The formed Mg enolates 66 readily react with
PDF
Album
Review
Published 04 May 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • derivatives (see Scheme 1). First, the arylimidazole is obtained through a ring closing reaction using an aniline derivative, glyoxal, formaldehyde and ammonium chloride. The following alkylation with hexyl bromide yields the bromido ionic liquid. TAAILs 1–6 are then formed by an anion exchange reaction using
  • , 2.1 equiv formaldehyde, 2 equiv NH4Cl, MeOH, 65 °C, ii) 1.1 equiv C6H13Br, THF, 70 °C, iii) 1.1 equiv LiNTf2, DCM/MeOH/H2O, rt. Model reaction for the Friedel–Crafts acylation. Scope of the Friedel–Crafts acylation. Reaction conditions: 1 mmol benzene derivative, 2 equiv anhydride, 10 mol % FeCl3·6H2O
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023
Graphical Abstract
  • S-19 was attempted (Table 1, entry 1) but proved not to be necessary as the intramolecular Diels–Alder reaction proceeded readily during the reaction. Other conditions using an excess of formaldehyde, paraformaldehyde, or gaseous formaldehyde (Table 1, entries 2–4) were unsuccessful, mostly due to
  • slow reaction, but a 37% solution of formaldehyde in water/methanol proved to be successful (Table 1, entries 5–10). Nevertheless, two problems were encountered. First, the Diels–Alder products 9–11 proved to be also active Mannich acceptors, leading to the unwanted unsaturated ketone 20, a double
  • Mannich product. To avoid this second addition, an excess or equimolar amounts of formaldehyde were avoided (Table 1, entries 6–10). The best result was achieved by adding only 0.4 equivalents formaldehyde to obtain products S-9–11 (Table 1, entries 9 and 10). The stereochemical descriptors S and R in
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • group on C6 was introduced after cyclopropane ring-opening, ketone protection, epoxidation and reductive ring-opening of the resulting epoxide. A one-pot β-keto phosphonate formation/Horner–Wadsworth–Emmons reaction with formaldehyde afforded 38, a precursor for the key oxidative dearomatization-induced
PDF
Album
Review
Published 12 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • 27. Here, heteroaromatic, aromatic, and aliphatic aldehydes along with formaldehyde were taken into consideration providing the corresponding products in 33–76% yield (Scheme 6). Based on the plausible mechanism proposed by the authors, most likely the reaction began with the nucleophilic addition
  • 35a–q were obtained in 29–96% yields (Scheme 7). Various aldehydes, like heteroaromatic, aromatic, aliphatic, and formaldehyde as 37% solutions in water were chosen to react with several 1-arylimidazole N-oxides, 2-unsubstituted 1-alkyl-4,5-dimethylimidazole N-oxides, and 1-alkyl-2,4-unsubstituted
PDF
Album
Review
Published 22 Nov 2022

Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence to access phosphoric esters

  • Jin Yang,
  • Dang-Wei Qian and
  • Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123

Graphical Abstract
  • formaldehyde or ketone groups could also be transformed into the desired diphosphination products 3bm and 3bn in moderate to good yield. The generality of the system was further showcased by tolerating quinoline and isoquinoline groups, and the desired products 3bp and 3bq were afforded in a high yield
PDF
Album
Supp Info
Letter
Published 09 Sep 2022

A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH4/I2 system

  • Lin Chen,
  • Xuan Zhou,
  • Zhiyong Chen,
  • Changxu Wang,
  • Shunjie Wang and
  • Hanbing Teng

Beilstein J. Org. Chem. 2022, 18, 1032–1039, doi:10.3762/bjoc.18.104

Graphical Abstract
  • the methylation reagents and the reductive amination reactions by using formaldehyde or paraformaldehyde as the “indirect” alkylation reagents [16][17][18][19]. Recently, a variety of promising methylating agents or C1 sources such as formic acid [20][21], methanol [22][23][24][25][26][27][28][29][30
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • (25), formaldehyde (26), and aniline (27) and 10 mol % of the organocatalyst to yield β-aminoketone 28 in 85% yield (88% ee), in less than 1 h. Although a significantly higher yield was achieved compared to the batch experiment, a slight reduction in enantioselectivity was observed. The Petasis or
PDF
Album
Review
Published 20 Jun 2022

New synthesis of a late-stage tetracyclic key intermediate of lumateperone

  • Mátyás Milen,
  • Bálint Nyulasi,
  • Tamás Nagy,
  • Gyula Simig and
  • Balázs Volk

Beilstein J. Org. Chem. 2022, 18, 653–659, doi:10.3762/bjoc.18.66

Graphical Abstract
  • reduced with sodium cyanoborohydride in acetic acid to cis-indoline derivative (±)-35. Removal of the trifluoroacetyl group to (±)-36 followed by N-methylation with formaldehyde and sodium cyanoborohydride gave target compound (±)-9a. It has to be mentioned that the preparation of compound 31 has been
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2022

Cholyl 1,3,4-oxadiazole hybrid compounds: design, synthesis and antimicrobial assessment

  • Anas J. Rasras,
  • Mohamed El-Naggar,
  • Nesreen A. Safwat and
  • Raed A. Al-Qawasmeh

Beilstein J. Org. Chem. 2022, 18, 631–638, doi:10.3762/bjoc.18.63

Graphical Abstract
  • of 22 diverse compounds. Briefly, the alkyne 3 was treated with formaldehyde, a secondary amine, and CuI as catalyst in DMSO (Scheme 3). The three components were stirred at room temperature for 3 h to furnish the desired compounds 4a–v in moderate to excellent yields [14][34]. By this route, diverse
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • the reaction of menadione (10) with formaldehyde in the presence of gaseous HCl bubbled into the reaction medium [129][130]. Then, the chloromethyl derivative 84 was treated with diselenides, generated in situ from the reaction between Se0, NaBH4 and different acid chlorides, to form conjugates 86 in
PDF
Album
Review
Published 11 Apr 2022

Study on the interactions between melamine-cored Schiff bases with cucurbit[n]urils of different sizes and its application in detecting silver ions

  • Jun-Xian Gou,
  • Yang Luo,
  • Xi-Nan Yang,
  • Wei Zhang,
  • Ji-Hong Lu,
  • Zhu Tao and
  • Xin Xiao

Beilstein J. Org. Chem. 2021, 17, 2950–2958, doi:10.3762/bjoc.17.204

Graphical Abstract
  • attracted much attention due to its three-branched structure and excellent physical and chemical properties, which is commonly used in many applications including plastic dishes, the main raw material for formaldehyde resin, etc. [15]. Cucurbit[n]urils (Q[n]s, Scheme 1), a kind of supramolecular compound
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2021
Other Beilstein-Institut Open Science Activities