Search results

Search for "halogen bonding" in Full Text gives 33 result(s) in Beilstein Journal of Organic Chemistry.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • , Chiba 263-8522, Japan 10.3762/bjoc.21.43 Abstract β-Amino cyanoesters are important scaffolds because they can be transformed into useful chiral amines, amino acids, and amino alcohols. Halogen bonding, which can be formed between halogen atoms and electron-rich chemical species, is attractive because
  • of its unique interaction in organic synthesis. Chiral halonium salts have been found to have strong halogen-bonding-donor abilities and work as powerful asymmetric catalysts. Recently, we have developed binaphthyl-based chiral halonium salts and applied them in several enantioselective reactions
  • ; chiral halonium salt; contiguous stereocenters; halogen bonding; Mannich reaction; Introduction Halogen bonding (XB) has attracted intense research attention for its unique interaction between halogen atoms and electron-rich substituents [1]. XB has been applied to various fields of chemistry, such as
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Electrochemical synthesis of cyclic biaryl λ3-bromanes from 2,2’-dibromobiphenyls

  • Andrejs Savkins and
  • Igors Sokolovs

Beilstein J. Org. Chem. 2025, 21, 451–457, doi:10.3762/bjoc.21.32

Graphical Abstract
  • ]. In addition, cyclic diaryl λ3-bromanes have been successfully employed as halogen-bonding organocatalysts in Michael addition [8] and their chiral variants were efficient in catalyzing enantioselective Mannich reactions of ketimines with cyanomethyl coumarins [9] and malonic esters [10]. These
PDF
Album
Supp Info
Letter
Published 27 Feb 2025

Synthesis and conformational analysis of pyran inter-halide analogues of ᴅ-talose

  • Olivier Lessard,
  • Mathilde Grosset-Magagne,
  • Paul A. Johnson and
  • Denis Giguère

Beilstein J. Org. Chem. 2024, 20, 2442–2454, doi:10.3762/bjoc.20.208

Graphical Abstract
  • , halogen bonding is an important interaction in biological systems [12][13][14][15][16][17] and the beneficial effect of the chloro substituent has been reviewed recently [18]. As a result, there is a lack of efficient synthetic strategies to access multivicinal inter-halide stereocenters (i.e., contiguous
  • °) and Br4···O (d = 3.143 Å, a = 177.49°)) (Table 7) (and see Supporting Information File 1). To the best of our knowledge, this is the first application of halogen bonding in the context of solid-state ordering of pyran inter-halides. Our interest in the synthesis and conformation of multivicinal inter
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • . Finally, the potential as halogen-bonding activator was benchmarked in solution in the gold-catalyzed cyclization of a propargyl amide. Keywords: diaryliodonium; gold catalysis; halogen bonding; hypervalent iodine; non-covalent interactions; Introduction The compound class of diaryliodonium (DAI) salts
  • in a Mannich reaction [4]. In 2018, our group showed in a proof-of-principle study [5] that the Lewis acid catalysis by DAI salts is based on halogen bonding (XB), an interaction between a Lewis base (XB acceptor) and an electrophilic halogen atom in the Lewis acid (XB donor) [6][7][8][9][10]. In
  • , halogen bonding [I1···Br1 = 3.0610(5) Å, 80% of Σr, and C8–I1···Br1 = 171.67(9)°] and hydrogen bonding were found [H2···Br1 = 2.7991(4) Å, 95% of Σr, C2···Br1 = 3.545(4) Å, 100% of Σr and C2–H2···Br1 = 136.1(2)°]. On the other axis, no ortho proton is present, so only XB is observed [I1···Br1 = 3.2023(5
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
PDF
Album
Review
Published 10 Sep 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • an effective chalcogen bond donation to the substrates, in place of the halogen bonding previously described. Although their catalytic activity was reported to be lower than the one of aryl iodonium derivatives, this research contributed to the scarce number of publications on the catalytic activity
PDF
Album
Review
Published 01 Aug 2024

Oxidative fluorination with Selectfluor: A convenient procedure for preparing hypervalent iodine(V) fluorides

  • Samuel M. G. Dearman,
  • Xiang Li,
  • Yang Li,
  • Kuldip Singh and
  • Alison M. Stuart

Beilstein J. Org. Chem. 2024, 20, 1785–1793, doi:10.3762/bjoc.20.157

Graphical Abstract
  • ) fluorides in good isolated yields (72–90%). Stability studies revealed that bicyclic difluoro(aryl)-λ5-iodane 6 was much more stable in acetonitrile-d3 than in chloroform-d1, presumably due to acetonitrile coordinating to the iodine(V) centre and stabilising it via halogen bonding. Keywords: fluorination
  • ; fluorobenziodoxoles; halogen bonding; hypervalent iodine; Selectfluor; Introduction An important strategy in the drug discovery process is the incorporation of fluorine into biologically active molecules because fluorine can improve bioactivity and pharmacokinetic properties [1]. Consequently, 22% of all small
  • bonding is well-established in hypervalent iodine(III) compounds and Dutton showed that pyridine formed a weak complex with dichloroiodobenzene via halogen bonding [30][31][32]. We therefore added dry pyridine (2.4 equivalents) to difluoroiodane 6 in CDCl3 to help stabilise the iodine(V) centre and the
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2024

A comparison of structure, bonding and non-covalent interactions of aryl halide and diarylhalonium halogen-bond donors

  • Nicole Javaly,
  • Theresa M. McCormick and
  • David R. Stuart

Beilstein J. Org. Chem. 2024, 20, 1428–1435, doi:10.3762/bjoc.20.125

Graphical Abstract
  • Nicole Javaly Theresa M. McCormick David R. Stuart Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland OR 97201, United States 10.3762/bjoc.20.125 Abstract Halogen bonding permeates many areas of chemistry. A wide range of halogen-bond donors including neutral, cationic
  • halogen-bond formation by the linear combination of the % p-orbital character on the halogen and energy of the σ-hole on the halogen-bond donor. Keywords: aryl halide; diarylhalonium; halogen; halogen bond; non-covalent interaction; Introduction Halogen bonding has emerged as an important attractive
  • interaction in a wide range of applications that include crystal engineering, drug discovery and light-emitting materials [1][2][3][4]. Although, halogen bonding was first “observed” over 200 years ago [5][6] and the structural characteristics were elucidated in the latter half of the nineteenth century [7
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • . Finally, another nucleophilic attack by a second molecule of indole to IV is occurring, forming the desired BIM 12, while simultaneously releasing the catalyst, rendering it available for another catalytic cycle [80]. Halogen bonding processes Recently, halogen bonding (XB) interactions have emerged as an
  • be addressed. The most recent application of halogen bonding in the synthesis of BIMs was introduced in 2023 by Galathri et al., who employed an N-heterocyclic iod(az)olium salt as the monodentate catalyst [96]. This approach utilized water as the reaction solvent and employed a low catalyst loading
  • of just 0.5 mol %, while providing satisfying yields (60–96%) in just 1 hour. The employment of a green aqueous medium, the mild reaction conditions and the relatively broad substrate scope are some of the benefits that render this protocol more efficient than previous halogen-bonding methodologies
PDF
Album
Review
Published 22 Feb 2024

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • Carlee A. Montgomery Graham K. Murphy Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada 10.3762/bjoc.19.86 Abstract Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine’s σ
  • -holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article
  • provides an overview of the reactions of iodonium ylides in which halogen bonding has been invoked. Herein, we summarize key discoveries and mechanistic proposals from the early iodonium ylide literature that invoked halogen bonding-type mechanisms, as well as recent reports of reactions between iodonium
PDF
Album
Review
Published 07 Aug 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • deuterated acetonitrile (Figure 3). Interestingly, a change in chemical shift of the diagnostic α-protons of 2a was displayed upon addition of increasing amounts of DABCO, suggesting the presence of the halogen-bonding interaction [30]. More precisely, the 1H NMR signal of the α-hydrogens (Hα) within 2a was
  • found to shift to lower ppm values because the Hα nuclei have been affected by higher electron density caused by the formation of the halogen-bonded complex between 2a and DABCO. To confirm that the shift of Hα was indeed produced by a halogen-bonding interaction, 19F NMR analysis of compound 2d, which
  • absorption spectra recorded in acetonitrile in 1 cm path quartz cuvettes. [DABCO]: 0.5 M; [2a]: 0.5 M. 1H NMR titration of DABCO in a solution of 2a in ACN-d3 to detect their halogen-bonding association through the shift of the signal of Hα. Proposed reaction mechanism for the photochemical alkylation of 1a
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Synthesis and reactivity of azole-based iodazinium salts

  • Thomas J. Kuczmera,
  • Annalena Dietz,
  • Andreas Boelke and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 317–324, doi:10.3762/bjoc.19.27

Graphical Abstract
  • observed a coordination of the triflates along the C–I axis with distances of 2.705 Å (I1–O1) and 2.898 Å (I1–O5). For the ortho-methyl-substituted analogue 5ax, no halogen bonding to the triflates was observed, indicating an effective steric protection of the σ-holes [36]. Instead, there were only two
  • result obtained when using the stabilized salt 12 (Scheme 2b) [44]. Here, no counter-ion exchange to chloride was observed. The favored counter ion is determined by the pKa value of the corresponding acids but not by halogen bonding due to the steric hindrance at the iodines’ σ-holes. The reaction of
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2023

Supramolecular approaches to mediate chemical reactivity

  • Pablo Ballester,
  • Qi-Qiang Wang and
  • Carmine Gaeta

Beilstein J. Org. Chem. 2022, 18, 1463–1465, doi:10.3762/bjoc.18.152

Graphical Abstract
  • hydrogen bonding interactions play a pivotal role in catalysis. More recently, halogen bonding interactions have been used as a novel tool to catalyze a wide variety of processes. Other nonclassical interactions, including anion-, chalcogen-, and pnictogen bonding, have also been exploited for the design
PDF
Editorial
Published 14 Oct 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • to slightly better stereodiscrimation of the guest molecules (see Figure 17). Subsequently, Beer and co-workers reported the first example of a chiral halogen-bonding [3]rotaxane for the recognition and sensing of dicarboxylate anions [64]. The [3]rotaxane (S)-68 was prepared in a two-fold clipping
PDF
Album
Review
Published 06 May 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • noncovalent forces, hydrogen bonding interactions play a central role in noncovalent catalysis [2] while halogen bonding interactions have lately been exploited as a new tool to catalyze a diverse array of reactions [3][4][5]. In addition, nonclassical interactions such as anion–π [6][7][8][9][10][11] as well
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Structural effects of meso-halogenation on porphyrins

  • Keith J. Flanagan,
  • Maximilian Paradiz Dominguez,
  • Zoi Melissari,
  • Hans-Georg Eckhardt,
  • René M. Williams,
  • Dáire Gibbons,
  • Caroline Prior,
  • Gemma M. Locke,
  • Alina Meindl,
  • Aoife A. Ryan and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2021, 17, 1149–1170, doi:10.3762/bjoc.17.88

Graphical Abstract
  • architecture based on C–I···N and C–I···π interactions was formed through halogen bonding in the lattice of self-assembly of meso-tetraarylporphyrins [7]. In recent years there has been a strong uprising interest for substituting hydrogen-bonding motifs with their halogen-bonding counterparts. This is due to
  • pointing towards the phenyl rings in a ↑↓↑↓ repeating pattern (Figure 2C). However, in this structure, there is no evidence for halogen bonding. By the addition of a nickel(II) metal center to compound 1, we obtain the structure of compound 2 [27]. In this structure a variety of changes in the overall
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2021

Tuning the solid-state emission of liquid crystalline nitro-cyanostilbene by halogen bonding

  • Subrata Nath,
  • Alexander Kappelt,
  • Matthias Spengler,
  • Bibhisan Roy,
  • Jens Voskuhl and
  • Michael Giese

Beilstein J. Org. Chem. 2021, 17, 124–131, doi:10.3762/bjoc.17.13

Graphical Abstract
  • tuning of the fluorescence behaviour and mesomorphic properties of the assemblies. Keywords: fluorescence; halogen bonding; liquid crystal; Introduction Supramolecular chemistry has proven to be an efficient approach for the development of novel smart materials, since it relies on non-covalent
  • supramolecular liquid crystals, especially hydrogen bonding and halogen bonding have gained considerable attention [3][4][5][6][7]. In 2004, Bruce and co-workers reported the first example of a halogen-bonded liquid crystal based on pentafluoroiodobenzene and 4-alkoxystilbazole [5]. Ever since, several other
  • groups employed halogen bonding for the formation of liquid crystalline materials [8][9]. For instance, Palacio et al. used (E)-1-(4-(octyloxy)phenyl)-2-(2,3,5,6-tetrafluoro-4-iodophenyl)diazene as a photo-switchable halogen bond donor and investigated the light-induced phase transition of the complexes
PDF
Album
Supp Info
Letter
Published 14 Jan 2021

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • ISC processes through intermolecular halogen bonding to generate efficient RTP was initially investigated by Kim et al. [58]. They developed the minimalistic 2,5-dihexyloxy-4-bromobenzaldehyde (1) [59][60][61][62][63] which showed a weak fluorescence in solution, but exhibited a green phosphorescence
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Models of necessity

  • Timothy Clark and
  • Martin G. Hicks

Beilstein J. Org. Chem. 2020, 16, 1649–1661, doi:10.3762/bjoc.16.137

Graphical Abstract
  • approach leads to unnecessary complication of the model. As these interactions together with hydrogen and halogen bonding can all be treated within the single “σ-hole” framework [92], a single unified approach seems possible. However, such an approach would require a wave function or electron density
  • interaction between halogens and nucleophiles as repulsive; whereas we now know that halogen-bonding attractions can be as strong as hydrogen bonds. There will be more such examples but it is important to identify the encompassing phenomenon, rather than defining a wealth of apparently unique interactions
PDF
Album
Commentary
Published 13 Jul 2020

Development of fluorinated benzils and bisbenzils as room-temperature phosphorescent molecules

  • Shigeyuki Yamada,
  • Takuya Higashida,
  • Yizhou Wang,
  • Masato Morita,
  • Takuya Hosokai,
  • Kaveendra Maduwantha,
  • Kaveenga Rasika Koswattage and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2020, 16, 1154–1162, doi:10.3762/bjoc.16.102

Graphical Abstract
  • restriction of intramolecular motions [23]. Moreover, crystalline 2,5-dihexyloxy-4-bromobenzaldehyde displays green phosphorescence, which stems from rapid ISC due to the heavy atom effect via halogen bonding (C=O···Br) [24]. Moreover, benzophenone- or benzil-type molecules can achieve long-lived
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2020

Halogen-bonding-induced diverse aggregation of 4,5-diiodo-1,2,3-triazolium salts with different anions

  • Xingyu Xu,
  • Shiqing Huang,
  • Zengyu Zhang,
  • Lei Cao and
  • Xiaoyu Yan

Beilstein J. Org. Chem. 2020, 16, 78–87, doi:10.3762/bjoc.16.10

Graphical Abstract
  • triazolium salts show diverse aggregation via halogen bonding between C–I bonds and anions. Triazolium with halide anions exists as a tetramer with saddle conformation. Triazolium tetrafluoroborate exists as a trimer with Chinese lantern shape conformation. Triazolium trifluoroacetate and acetate exist as
  • the former shows a boat conformation and the latter forms a rectangle conformation. Triazolium salts form a linear polymer with polyiodide. 2-BF4 forms co-crystals with 4,4'-bipyridine via halogen bonding. DFT calculation results show that the σ holes of 4,5-diiodo-1,2,3-triazolium is similar to the σ
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2020

Fluorinated azobenzenes as supramolecular halogen-bonding building blocks

  • Esther Nieland,
  • Oliver Weingart and
  • Bernd M. Schmidt

Beilstein J. Org. Chem. 2019, 15, 2013–2019, doi:10.3762/bjoc.15.197

Graphical Abstract
  • building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are
  • azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations. Keywords: azobenzene; DFT calculations; fluorine chemistry; halogen bonding; photochemistry; Introduction The halogen bond is an attractive
  • noncovalent interaction between a polarized halogen atom (the halogen bond donor) and a Lewis base (the halogen bond acceptor) [1][2]. A prominent example regarding the origin of halogen bonding can be found in inorganic solid-state chemistry. The structurally diverse group of polyiodides, with its rich
PDF
Album
Supp Info
Letter
Published 23 Aug 2019

Halogen bonding and host–guest chemistry between N-alkylammonium resorcinarene halides, diiodoperfluorobutane and neutral guests

  • Fangfang Pan,
  • Mohadeseh Dashti,
  • Michael R. Reynolds,
  • Kari Rissanen,
  • John F. Trant and
  • Ngong Kodiah Beyeh

Beilstein J. Org. Chem. 2019, 15, 947–954, doi:10.3762/bjoc.15.91

Graphical Abstract
  • guest inclusion in solution. Keywords: capsule; dimeric assemblies; halogen bonding; host–guest chemistry; resorcinarene salts; X-ray crystallography; Introduction The construction of specific supramolecular assemblies based on the directional non-covalent bonding has been a central goal of
  • supramolecular chemistry and materials science [1][2][3]. New systems both help us to better understand the nature and impetus behind the self-assembly of these fascinating systems, while also providing new materials that can provide the basis for a wide number of applications [4][5]. Halogen bonding (XB), as a
  • crystallography: MeOH-MeCN@1&DIOFB and Water@2&DIOFB. These two structures, besides illustrating the potential of halogen bonding for organizing complex capsular systems, shed light on the importance of flexibility in affecting the self-assembled systems. Results and Discussion Single crystal X-ray diffraction
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2019

Mechanochemistry of supramolecules

  • Anima Bose and
  • Prasenjit Mal

Beilstein J. Org. Chem. 2019, 15, 881–900, doi:10.3762/bjoc.15.86

Graphical Abstract
  • chemistry reactions, as it relies on soft force [97][98] or non-covalent interactions [2] such as hydrogen bonding [99], cation–π [100][101][102], anion–π [103], hydrophobic effect [104][105], halogen bonding [106][107][108][109], etc. As enzymes are structurally complex entities and are difficult to modify
  • has been shown to proceed with excellent turnover numbers. Recently, Friščić and Cinčić with co-workers reported an elaborative study on the halogen bonding between 1,3,5-trifluoro-2,4,6-triiodobenzene and triphenylphosphine, -arsine, and -stibine under neat mechanochemical conditions or through
PDF
Album
Review
Published 12 Apr 2019

Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies

  • Artur Jabłoński,
  • Yannic Fritz,
  • Hans-Achim Wagenknecht,
  • Rafał Czerwieniec,
  • Tytus Bernaś,
  • Damian Trzybiński,
  • Krzysztof Woźniak and
  • Konrad Kowalski

Beilstein J. Org. Chem. 2017, 13, 2521–2534, doi:10.3762/bjoc.13.249

Graphical Abstract
  • distance = 2.882(2) Å) and halogen bonding (C30–Cl31···O28 distance = 2.972(2) Å) observed in the crystal packing of 2. UV–vis absorption and fluorescence spectra of pyrene–adenines 5 (a) and 3 (b) in diluted (c ≈ 10−5 M) dichloromethane solutions at ambient temperature. Absorption changes during titration
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2017
Other Beilstein-Institut Open Science Activities