Search results

Search for "mechanistic studies" in Full Text gives 186 result(s) in Beilstein Journal of Organic Chemistry.

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • gem-difluoroalkenes with organic azides in morpholine as a solvent to construct fully decorated morpholine-substituted 1,2,3-triazoles. Mechanistic studies revealed the formation of an addition–elimination intermediate of morpholine and gem-difluoroalkenes prior to the triazolization reaction via two
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • pyrrolines 62 were obtained by changing the reaction solvent to MeCN. Also, organic fluorophore compounds such as benzothienopyrrole and bis-thiolated boron dipyrromethene can be achieved from 3-thiolated pyrroles. Mechanistic studies showed that the oxidative species HNO and HCHO were generated through a
  • conversion of 1-I to 2-II was confirmed by mechanistic studies due to the stability of the benzyl carbocation, followed by 6-endo-dig cyclization. In this method, toxic transition metal catalysts, oxidants, or bases are not used, which made it economically and environmentally reliable. In 2023, Gao et al
  • is no need to use a metal catalyst, base, or additive. N-(Sulfenyl)succinimide/phthalimide acted as an active electrophilic sulfur source, acted in the reaction mechanisms. However, mechanistic studies need further exploration to define a valid reaction pathway. Therefore, we believe that the use of
PDF
Album
Review
Published 27 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • form new C–Cl bonds in the presence of transient alkyl radicals, with mechanistic studies implicating homolytic abstraction of a chlorine ligand from the intermediate copper complex. Outside of the substitution products which could be generated from the RLT pathway, alkyl radicals could also undergo an
  • simplified manganese salen complex I, allowing for the identity of the carbon–heteroatom bond to be controlled based on added nucleophile and enabling C–Cl, C–N, and C–S bonds to be formed directly while completely suppressing traditional ATRA products [9]. In mechanistic studies, rearrangement products
  • adventitious discovery of nitrate functioning as a mild and selective oxidant in RLT catalytic systems presents many opportunities for future method development and are avidly pursuing this area of research. Outlook After scant exploration following its elucidation in early mechanistic studies of bioinorganic
PDF
Album
Perspective
Published 15 Aug 2023

Unravelling a trichloroacetic acid-catalyzed cascade access to benzo[f]chromeno[2,3-h]quinoxalinoporphyrins

  • Chandra Sekhar Tekuri,
  • Pargat Singh and
  • Mahendra Nath

Beilstein J. Org. Chem. 2023, 19, 1216–1224, doi:10.3762/bjoc.19.89

Graphical Abstract
  • , copper(II) benzo[f]quinoxalinoporphyrin 17 for the mechanistic studies. On photophysical evaluation, the newly synthesized porphyrins displayed significant red-shifted absorption and emission as compared to simple meso-tetraarylporphyrins due to the extended π-electronic conjugation. Hence, the present
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • quenching study (Scheme 3F), expressed that the photoredox reaction started with the reductive generation of a malonyl radical from bromomalonate by interaction with the photocatalyst. Analyzing all the observations from the above mechanistic studies, we propose a plausible mechanism involving sequential
PDF
Album
Supp Info
Letter
Published 12 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • their control experiments and literature mechanistic studies (Chegondi et al.) [84], the role of the base (LiOt-Bu) was considered. Following the Cu-catalyzed conjugate addition of B2pin2, the Michael cyclization is facilitated by the transmetalation of stoichiometric Li base with the Cu enolate (Scheme
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -trifluoromethyl substituent forming the ketone product in <10% yield. While substitution of the norbornene was tolerated, both EWGs and EDGs hindered the reaction. Upon several mechanistic studies, the authors proposed the catalytic cycle begins with the oxidative addition of the active Ni(0) catalyst to imide 27
  • typically problematic in C–H activation reactions. Through mechanistic studies, the authors proposed the rate limiting step for this reaction is the C–H cleavage. In 2015, Miura and co-workers reported the Rh-catalyzed domino dehydrative naphthylation of oxabenzonorbornadienes 30 with arylphosphine
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • isolated in 70% yield. Mechanistic studies indicated that the C–H bond activation event was the rate-limiting step and the authors suggested a similar mechanism to the one depicted in Scheme 20: formation of a palladacycle thanks to a concerted metalation deprotonation (CMD) process followed by oxidation
PDF
Album
Review
Published 17 Apr 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • -depth mechanistic studies were so far reported regarding the reactivity of the enol phosphate electrophiles (Scheme 3 and Scheme 4, and Table 2, entry 4). Phosphate free anions released at each catalytic cycle could act either as NMP or alkoxides, that is, as ligands to the magnesium cations, or as
PDF
Album
Perspective
Published 14 Feb 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • analysis of lactam 19l. In order to shed light on the details of the reaction mechanism, we have performed carefully designed mechanistic studies which consist of experiments on the effect of β-silicon stabilization, the alkene geometry of the α,β-unsaturated acyl chloride reactants, and adventitious water
  • catalytic aza-Nazarov reaction starting from cyclic and acyclic imines and TMS-substituted α,β-unsaturated acyl chlorides to yield α-methylene-γ-lactam heterocycles with high diastereoselectivities. We also report the results of our detailed mechanistic studies along with the necessary control experiments
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • intermediate radical reduction. The observed diastereoselectivity can be rationalized by referring to earlier mechanistic studies [79]. The same (−)-configured intermediate 147 was utilized in a HAT-initiated oxidation to access (−)-minovincinine (150) in 38% yield after deprotection (Scheme 12). Interestingly
PDF
Album
Review
Published 02 Jan 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • products that can be purified by SiO2 column chromatography, other noteworthy advantages are the possibility of isolating side products that may aid in mechanistic studies, and the recyclability and robustness of the SiO2 columns. One of the main issues that can be found with this purification technique is
PDF
Album
Perspective
Published 16 Dec 2022

Characterization of a new fusicoccane-type diterpene synthase and an associated P450 enzyme

  • Jia-Hua Huang,
  • Jian-Ming Lv,
  • Liang-Yan Xiao,
  • Qian Xu,
  • Fu-Long Lin,
  • Gao-Qian Wang,
  • Guo-Dong Chen,
  • Sheng-Ying Qin,
  • Dan Hu and
  • Hao Gao

Beilstein J. Org. Chem. 2022, 18, 1396–1402, doi:10.3762/bjoc.18.144

Graphical Abstract
  • ]. Conclusion We have identified a new fungal FC-type DTS, which is responsible for the biosynthesis of talaro-7,13-diene (1). Further mechanistic studies revealed that 2,6-cyclization in the formation of 1 is likely to be triggered by protonation of the neutral intermediate 3, and Tyr91 in TadA plays a
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2022

B–N/B–H Transborylation: borane-catalysed nitrile hydroboration

  • Filip Meger,
  • Alexander C. W. Kwok,
  • Franziska Gilch,
  • Dominic R. Willcox,
  • Alex J. Hendy,
  • Kieran Nicholson,
  • Andrew D. Bage,
  • Thomas Langer,
  • Thomas A. Hunt and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2022, 18, 1332–1337, doi:10.3762/bjoc.18.138

Graphical Abstract
  • relies upon stoichiometric reagents or transition-metal catalysis. Herein, a borane-catalysed hydroboration of nitriles to give primary amines is reported. Good yields (48–95%) and chemoselectivity (e.g., ester, nitro, sulfone) were observed. DFT calculations and mechanistic studies support the proposal
  • is proposed to serve as the key turnover step in catalysis, supported by computational mechanistic studies. This approach uses both a commercially-available catalyst and turnover reagent, providing good user accessibility, and displays comparable chemoselectivity to current state-of-the-art catalysed
PDF
Album
Supp Info
Letter
Published 26 Sep 2022

A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH4I

  • Shang-Feng Yang,
  • Pei Li,
  • Zi-Lin Fang,
  • Sen Liang,
  • Hong-Yu Tian,
  • Bao-Guo Sun,
  • Kun Xu and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2022, 18, 1249–1255, doi:10.3762/bjoc.18.130

Graphical Abstract
  • ) should be a key intermediate for this tandem reaction. On the basis of the above mechanistic studies and the previous works on iodide-mediated electrochemical transformation [37][38][39][40], a possible mechanism for this electrochemical reaction was proposed (Scheme 5). It is well known that amino acid
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2022

Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility

  • Koichi Mitsudo,
  • Haruka Inoue,
  • Yuta Niki,
  • Eisuke Sato and
  • Seiji Suga

Beilstein J. Org. Chem. 2022, 18, 1055–1061, doi:10.3762/bjoc.18.107

Graphical Abstract
  • 72% yield with good selectivity (89%). Both 1f and 1g could be used in this reactions, and the corresponding alcohols 3f and 3g were obtained as major products. Mechanistic studies To gain further insight into the reaction mechanism of the chemoselectivity of a Pd/C cathode system, some additional
  • . Charge was passed to the circulated solution until 1 was consumed. The yield was determined by GC analysis using n-dodecane as an internal standard. Values in parentheses show the chemoselectivity of 3, which was calculated as yield of 3 / yield of (2 + 3). Mechanistic studies. Electroreduction of 1a
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2022

Mechanistic studies of the solvolysis of alkanesulfonyl and arenesulfonyl halides

  • Malcolm J. D’Souza and
  • Dennis N. Kevill

Beilstein J. Org. Chem. 2022, 18, 120–132, doi:10.3762/bjoc.18.13

Graphical Abstract
PDF
Album
Review
Published 17 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • [59]. The authors proposed a plausible catalytic cycle based on a series of mechanistic studies (Scheme 3). First, FeCl2 will react with the aryl Grignard reagent to form an aryliron complex 8 which can undergo a SET with the iodoalkane to yield the radical substrate 9. A 5-exo-dig cyclization will
  • sections: strictly carbon CDC reactions and heteroatomic CDC reactions. Iron-catalyzed carbon–carbon cross dehydrogenative coupling In 2013, Li and co-workers reported the FeCl3-catalyzed arylalkylation of activated alkenes 60 for the synthesis of oxindoles 62 (Scheme 10) [80]. Mechanistic studies
  • -carbonyl alkyl bromides 147 and indole derivatives 146 (Scheme 30) [124]. Although the reaction operated in the absence of the iron catalyst, its use is crucial for high yielding reactions. Preliminary mechanistic studies suggest the reaction proceeds through a radical addition of the carbon-centered alkyl
PDF
Album
Review
Published 07 Dec 2021

Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group

  • Chuanhua Qu,
  • Run Huang,
  • Yong Li,
  • Tong Liu,
  • Yuan Chen and
  • Guiting Song

Beilstein J. Org. Chem. 2021, 17, 2822–2831, doi:10.3762/bjoc.17.193

Graphical Abstract
  • mmol), MeCN (1.0 mL), 80 °C, under air atmosphere for 10 h; yields are reported for the isolated products. Synthetic applications of the synthesized compound 3b. Mechanistic studies and proposed mechanism. Optimization of the reaction conditions for the sulfonylation and isonitrilation of p-quinone
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • process, suggesting that dynamic kinetic resolution could be used to accomplish enantioselective synthesis of axially chiral 3,3'-bisindoles. The mechanistic studies showed that the N–H group of 3,3′-bisindoles 47 played a crucial role in carrying out the addition reaction with substrates 52 possibly by
  • -amino allenoates 101 was prepared in moderate to excellent yields (69–99%), dr (9:1 to >20:1), and excellent enantioselectivity (91–99% ee, Scheme 34). The mechanistic studies showed that the substituents at the second and third positions of the indole play a crucial role in the chemo- and
PDF
Album
Review
Published 15 Nov 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • ), which was due to the ability of copper to stabilize and interact with radical intermediates in its coordination sphere. Mechanistic studies revealed that the iodoperfluoroalkylation of alkenes and alkynes involved a rebound or ligand transfer cycle (section 3.1). In 2017, Wang and co-workers [54
  • alkyl halides 14, olefins, and trifluoromethylthiolate 15. Mechanistic studies demonstrated that the photoexcited CuI/binap/SCF3 complex generated in situ engages in electron transfer with the alkyl halides, thereby providing an alkyl radical and the CuII/binap/SCF3 species. Subsequently, the alkyl
  • , 18 (Scheme 10 and Scheme 11). Based on previous mechanistic studies [41], the authors found that the photoexcited ligand–CuI−amido species transferred electrons to alkyl halides to produce alkyl radicals, which reacted with alkenes and amines to generate the three-component coupling products. In the
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • preparation of ferrocene–drug conjugates effectively. Mechanistic studies indicated that the C–H activation step was the rate-determining step. 3d-Transition-metal-catalyzed C–H functionalization to access functionalized ferrocenes. Scope of ferrocenes with morpholine. Scope of various amines with 1a
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • , right). However, based on the freshly coined concept of anion-binding activation [30][31] and as the exact interaction mode of the catalyst remained elusive, Jacobsen’s group focused their attention towards mechanistic studies of thiourea-catalyzed reactions. In 2007, they reported a Pictet–Spengler
  • species. However, the cationic counterpart can have important effects on the kinetics of the systems. This hypothesis has evidently been identified in enzymatic reactions [68]. Mechanistic studies have shown that in such processes, cationic species are stabilized through various attractive interactions
  • crucial, while the urea analog of the catalysts proved less efficient and led to diminished reactivity and stereoselectivity. Further mechanistic studies corroborated this hypothesis as more electron-rich allylsilane derivatives were consumed slower despite being inherently more nucleophilic. Another
PDF
Album
Review
Published 01 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • similar reaction conditions with moderate to good yields. Based on their detailed mechanistic studies, the authors proposed a possible catalytic cycle involving a C–H cleavage via a HAT process between the triplet excited ketone photocatalyst 24 and the C(sp3)–H substrates (Figure 8) [66]. Thus, the
  • enantioselectivities. A wide range of aryl bromides 3 were tested with alkylbenzenes 25 under ambient reaction conditions and afforded the desired products 26 in moderate yields and good enantioselectivities. Based on their control experiments and mechanistic studies, it was postulated that a bromine radical might be
  • radical source via a nickel/photoredox-catalyzed HAT processes (Scheme 28) [92]. The method was also compatible with other chlorine-containing electrophiles such as acyl chlorides 45 to afford methyl ketones 47 in moderate yields. Based on the detailed mechanistic studies, the authors proposed a catalytic
PDF
Album
Review
Published 31 Aug 2021

Constrained thermoresponsive polymers – new insights into fundamentals and applications

  • Patricia Flemming,
  • Alexander S. Münch,
  • Andreas Fery and
  • Petra Uhlmann

Beilstein J. Org. Chem. 2021, 17, 2123–2163, doi:10.3762/bjoc.17.138

Graphical Abstract
PDF
Album
Review
Published 20 Aug 2021
Other Beilstein-Institut Open Science Activities