Search results

Search for "phosphine" in Full Text gives 319 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Improved deconvolution of natural products’ protein targets using diagnostic ions from chemical proteomics linkers

  • Andreas Wiest and
  • Pavel Kielkowski

Beilstein J. Org. Chem. 2024, 20, 2323–2341, doi:10.3762/bjoc.20.199

Graphical Abstract
  • alkyne probe from the CuAAC reaction mixture or by increasing the concentration of the reducing agent such as tris(2-carboxyethyl)phosphine (TCEP). The reversed chemical proteomics approach in which the azide probe and alkyne tag are used suffers from similar unspecific reactivity of the terminal alkyne
PDF
Album
Review
Published 12 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • interelement compounds such as Ph2P–PPh2 and Ph2P(S) –PPh2 to phenyl isocyanide, but the addition did not proceed at all. This is most likely due to the bulkiness of the Ph2P and Ph2P(S) groups (Scheme 8) [39]. In sharp contrast, the addition of a germyl phosphine (Et2P–GeEt3) to phenyl isocyanide was reported
PDF
Album
Perspective
Published 26 Aug 2024

Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate

  • Masahiro Terada,
  • Zen Iwasaki,
  • Ryohei Yazaki,
  • Shigenobu Umemiya and
  • Jun Kikuchi

Beilstein J. Org. Chem. 2024, 20, 1973–1980, doi:10.3762/bjoc.20.173

Graphical Abstract
  • moderate yield (entry 1: 42%, cf. batch reaction: 76%). Lowering the reaction temperature to 25 °C reduced the yield (Table 1, entry 2: 35%), but decreasing the amount of the phosphine ligand from 20 mol % to 5 mol % markedly improved the yield (Table 1, entry 3: 53%). Even when the flow rate was increased
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2024

Regioselective alkylation of a versatile indazole: Electrophile scope and mechanistic insights from density functional theory calculations

  • Pengcheng Lu,
  • Luis Juarez,
  • Paul A. Wiget,
  • Weihe Zhang,
  • Krishnan Raman and
  • Pravin L. Kotian

Beilstein J. Org. Chem. 2024, 20, 1940–1954, doi:10.3762/bjoc.20.170

Graphical Abstract
  • the presence of Cs2CO3. To explore the possibility of N2-selectivity, we hypothesized that the phosphine intermediate of a Mitsunobu reaction could provide chelation control, directing alkylation to the indazole N2-atom while using identical alcohols as described above. Thus, we subjected 6 to simple
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • preparing spiro α-methylene-β-lactones from different steroidal propargylic alcohols [13]. The procedure involves a one-pot Pd-catalyzed cyclocarbonylation of alkynols using 5 mol % of Pd(CH3CN)2Cl2 as a catalyst precursor and 30 mol % of 2-(dibutyl)phosphine-1-(2,6-diisopropylphenyl)-1H-imidazole as
  • phosphine-based ligand (L). This methodology was applied to the alkynol moiety of ethinylestradiol (8) (86% yield), and alkynols derived from ethisterone, levonorgestrel, lynestrenol, and epiandrosterone (epi-ADT), obtaining excellent yields (85–93%) and high diastereoselectivity (dr > 20:1) in all cases. α
PDF
Album
Review
Published 24 Jul 2024

Towards an asymmetric β-selective addition of azlactones to allenoates

  • Behzad Nasiri,
  • Ghaffar Pasdar,
  • Paul Zebrowski,
  • Katharina Röser,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1504–1509, doi:10.3762/bjoc.20.134

Graphical Abstract
  • thus wondering if we could extend this ammonium salt-catalyzed β-selective allenoate functionalization strategy to other amino acid classes. Azlactones 1 have previously been used for γ-selective additions to allenoates under chiral phosphine catalysis [28]. In addition, glycine Schiff base derivatives
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • [28] introduced the photoredox-catalyzed hydroacylation of styrene derivatives via deoxygenation of challenging aliphatic carboxylic acids (Scheme 1). The deoxygenation was promoted by phosphine reagents to form acyl radicals. The acyl radicals reacted with the C=C bond and formed the expected product
  • . Appropriate selection of the phosphine reagent was the key to success in the process. Due to the lower oxidation potential, electron-rich PMe2Ph preferentially transferred a single electron to the excited state of the photocatalyst rather than the alkene, which was essential for obtaining the desired product
  • to a phosphine radical cation. The proposed mechanism involves the formation of a phosphine radical cation via SET from photoexcited [Ir(III)] complex. Subsequently, the benzylic alcohol initiates a polar nucleophilic attack on the phosphine radical cation, forming a phosphoranyl radical. This
PDF
Album
Review
Published 14 Jun 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • )phosphine ligand (PN3P) (Mn3) and studied N-methylation reactions in the presence of t-BuOK (20 mol %) at 120 °C for 24 h in toluene [36]. This catalytic system tolerated various functional groups, including nitro, ester, amide, and ketones and gave moderate to good yields (42–98%) of the mono-N-methylated
  • condenses with hydrazine followed by reduction and condensation with another aldehyde to afford the N-substituted hydrazones (Scheme 8). Balaraman and co-workers established a phosphine-free manganese catalyst generated in situ from a manganese precursor and a ligand for the N-alkylation of anilines with
  •  10). However, sulfonamides with electron-withdrawing groups attached to the aromatic ring (e.g., 4-NO2, 4-CN) were found incompatible with the conditions. Ke and co-workers described an exciting example of a phosphine-free Mn(I)-NHC catalyst for the N-alkylation of amines with alcohols at room
PDF
Album
Review
Published 21 May 2024

Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A

  • Maksim V. Kvach,
  • Stefan Harjes,
  • Harikrishnan M. Kurup,
  • Geoffrey B. Jameson,
  • Elena Harjes and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2024, 20, 1088–1098, doi:10.3762/bjoc.20.96

Graphical Abstract
  • basic conditions. Compound 3 was obtained nearly on a 20 g scale in 89% yield after purification by sublimation in vacuo. In the presence of a catalytic amount of AIBN, compound 3 reacted with bis(trimethylsiloxy)phosphine (4) that was prepared in situ [66]. Treatment of the reaction mixture with MeOH
  • carrying the β-anomer of Va was detected at the concentration used (20 and 100 µM of inhibitor DNA, 1 mM dC hairpin as a substrate, 600 nM of wild-type A3A containing His6 tag (wtA3A-His6) in 50 mM Na+/K+ phosphate buffer, supplemented with 100 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine (TCEP), 100 µM
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Enantioselective synthesis of β-aryl-γ-lactam derivatives via Heck–Matsuda desymmetrization of N-protected 2,5-dihydro-1H-pyrroles

  • Arnaldo G. de Oliveira Jr.,
  • Martí F. Wang,
  • Rafaela C. Carmona,
  • Danilo M. Lustosa,
  • Sergei A. Gorbatov and
  • Carlos R. D. Correia

Beilstein J. Org. Chem. 2024, 20, 940–949, doi:10.3762/bjoc.20.84

Graphical Abstract
  • , key five-membered olefins bearing heteroatoms can provide direct access to chiral sulfones, sulfoxides, phosphine oxides [8], phthalides, isochromanones, and lactones [9] in a very efficient and convenient manner. Despite our previous results in this area, the desymmetrization of 2,5-dihydro-1H
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • allosteric catalytic regulation (Figure 21). Mirkin and co-workers reported the symmetric tweezers 40 based on a Rh(I) complex with a phosphine and a labile thioether site and Cr(III)–salen arms as catalytic sites for the asymmetric ring opening of cyclohexene oxide by TMSN3 [80]. The closed tweezers showed
  • metalloporphyrin arms [83] or larger assemblies [78]. In particular, remarkable double tweezers (or triple-decker catalysts) 41 have been developed (Figure 22). These tweezers consist of two Rh(I) complexes, wherein a catalytically active metal Al(III)–salen arm is shared on the phosphine thioether ligand side
  • , and two separate aromatic arms are present on the phosphine ether/amine ligand side [84]. In the closed form, the system is catalytically inactive because the bulky aromatic arms stack with the salen complex and shield its access to the substrate. The addition of Cl− or acetonitrile causes the
PDF
Album
Review
Published 01 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron
  • both within the context of a classic gold π-activation/protodeauration mechanism and a general acid-catalyzed mechanism without intermediate gold alkyls. Keywords: alkene hydroamination; general acid catalysis; gold catalysis; isotope effect; phosphine ligand effect; solvent effect; Introduction
  • than those in CD2Cl2). However, this did not hold true uniformly. When a commercially available electron-acceptor ligand known as “Jackiephos” (bis(3,5-bis(trifluoromethyl)phenyl)(2′,4′,6′-triisopropyl-3,6-dimethoxybiphenyl-2-yl)phosphine was used as the AuNTf2 salt (6a), in CD2Cl2, the reaction rate
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Mono or double Pd-catalyzed C–H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives

  • Nahed Ketata,
  • Linhao Liu,
  • Ridha Ben Salem and
  • Henri Doucet

Beilstein J. Org. Chem. 2024, 20, 427–435, doi:10.3762/bjoc.20.37

Graphical Abstract
  • derivatives (Scheme 1b) [21]. In the course of this reaction 20 mol % of Pd catalyst, 50 mol % of phosphine ligand and 30 equiv of DBU as base were used to afford the desired fluoranthene derivatives. 1-Naphthylboronic acid and 1,2-dibromobenzene in the presence of Pd2(dba)3 (20 mol %) and PCy3 (80 mol
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2024

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  • group was substituted by a mesyl substituent and BIPHEP was used as a model phosphine ligand instead of Tol-BINAP to reduce the computational cost. The calculations, conducted at the B3LYP-D3/cc-pVTZ-PP(SMD=o-DCB)//B3LYP-D3/cc-pVDZ-PP level (see full computational details in Supporting Information File
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • the mentioned reactions, the first step of the catalytic cycle is the nucleophilic attack of the phosphine on the electrophile, in many cases an electron-deficient olefin. The zwitterion formed from this conjugate addition can subsequently act as a nucleophile or as a base [3][4][5]. The efficiency of
  • alkylphosphine, an aldehyde and an alkyne [32]. Another example resulting from phosphine addition to α,β-unsaturated aldehydes was published shortly afterwards [33]. Phosphonium carboxylate zwitterions have been obtained by the reaction of phosphines with acrylic acid [8] and ortho-carboxylated arylphosphines
  • 3.09 ppm, respectively, and two novel signals for tertiary butyl groups. Accordingly, we reasoned that the phosphine has reacted presumably with acrylonitrile forming a stable species not suited to catalyze the oxa-Michael reaction. In order to identify this compound, we reacted 1 with acrylonitrile or
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • hexafluorophosphate (BMIm-PF6) as co-solvent with methanol and water to allow recycling of a phosphine-based Au(I) complex, as an efficient catalytic system for the hydration of terminal alkynes [87]. Moreover, the interesting properties of ILs have also been exploited to synthesize new solid polymeric catalysts for
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors

  • Yordanka Mollova-Sapundzhieva,
  • Plamen Angelov,
  • Danail Georgiev and
  • Pavel Yanev

Beilstein J. Org. Chem. 2023, 19, 1804–1810, doi:10.3762/bjoc.19.132

Graphical Abstract
  • of methods for their synthesis is a very active area of research. Recent contributions to the synthesis of 4-quinolones made use of phosphine-mediated redox cyclization of 1-(2-nitroaryl)prop-2-ynones [39], palladium-catalyzed carbonylative cyclization of 2-bromonitrobenzenes and alkynes [40], TsCl
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • review, we primarily focus on summarizing the recent advancements in inexpensive and readily available iodide/phosphine-mediated photoredox radical transformations. Keywords: annulation; decarboxylative; iodide/phosphine; photocatalytic; radical reaction; Introduction Over the past few decades
  • advancements in the iodide/phosphine catalytic photoredox system. The primary focus of the paper is to delve into the unique catalytic reactivity exhibited by the iodide/phosphine photoredox system, while also exploring potential reaction mechanisms. It is mainly organized around different types of reactions
  • , providing a structured and systematic analysis of each category. Review Iodide/phosphine-catalyzed photoredox transformations Since the seminal work of Shang and Fu, the established NaI/PPh3 combined system has paved the way for a wide range of photoredox reactions. These reactions encompass diverse
PDF
Album
Review
Published 22 Nov 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • and co-workers [68] developed a new series of heteroleptic bis(NHC)–Cu(I) complexes and a mixed NHC–Cu–phosphine complex and employed these complexes as catalysts for azide–alkyne [3 + 2] cycloaddition (Scheme 50). These cationic heteroleptic bis(NHC)–Cu complexes 131 are highly active for this
PDF
Album
Review
Published 20 Sep 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • of heteroatoms, making them a promising alternative to traditional oxidants in the chemical industry [9]. Our interest in sustainable oxidation methodologies led us to study the selective oxidation of various heteroatoms to their corresponding oxides, including sulfides to sulfoxides, phosphine to
  • phosphine oxide, and selenides to selenoxides. Sulfoxide, phosphine oxide, and selenoxide-containing molecules have diverse applications in the pharmaceutical industry [10], as chiral auxiliaries or as ligands for asymmetric metal catalysis [11], and in materials such as polymers [12][13] and flame
  • retardants [14]. Sulfoxides are prominent pharmaceutical ingredients, while phosphine oxides improve solubility of corresponding compounds [15] and have applications in catalysis and materials science [16]. Selenoxides find use as oxygen transfer agents and donor ligands in metal catalysis and organic
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Copper-catalyzed N-arylation of amines with aryliodonium ylides in water

  • Kasturi U. Nabar,
  • Bhalchandra M. Bhanage and
  • Sudam G. Dawande

Beilstein J. Org. Chem. 2023, 19, 1008–1014, doi:10.3762/bjoc.19.76

Graphical Abstract
  • strategies for C–N bond formation have been extensively explored by various research groups for the N-arylation of amines. Specifically, seminal contributions by Buchwald [15] and Hartwig [16] involving the use of palladium complexes as catalysts in the presence of either phosphine or diamine ligands for C–N
PDF
Album
Supp Info
Letter
Published 04 Jul 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • for the first time an enantioselective C-2 alkylation of pyridine using a chiral phosphine oxide-ligated Ni–Al bimetallic catalyst system and the protocol was found effective for a wide range of pyridines including unsubstituted pyridines, C2, C3 and C4-substituted pyridines and complex pyridines
  • containing bioactive molecules (Scheme 10). To attain enantioselectivity a chiral phosphine oxide (43)-ligated Ni–Al bimetallic catalyst was used that was critical in improving the reactivity and controlling the selectivity of the reaction. Further, based on deuterium labelling experiments, KIE studies, and
PDF
Album
Review
Published 12 Jun 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • compounds 7a–e in 42–62% yields, but also gave higher amounts of products 9a–e (10–30%). Thus, the Pd- and phosphine-free Castro–Stephens coupling was a good enough alternative to synthesize alkynes 7. The structure of the double alkynylation product 9e was confirmed by X-ray diffraction data (see
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • (phosphite/phosphine-pyridine amide, phosphine-sulfoxide, phosphoramidite, MINBOL, see Figure 1) and they usually showed excellent diastereoselectivity (dr >20:1). The catalytic systems even with low catalyst loadings tolerated both electron-donating and withdrawing groups on the aromatic substituents
  • (Scheme 16). Within the framework of these domino reactions, we have mainly employed ferrocenyl phosphane ligands such as Taniaphos or Josiphos. In collaboration with Prof. Schmalz from Cologne University, we have also tested phosphite-phosphine ligands (e.g., L15) from their lab. The advantage of these
  • of α,β-unsaturated phosphine oxides 149 [79]. Their work also included an example of the consecutive trapping of the enolate by MeI (Scheme 38). Using the (R,Sp)-Josiphos ligand (L17), the product of the tandem reaction (150) was gained in 63% yield (dr 5.2:1). At the beginning of the new decade
PDF
Album
Review
Published 04 May 2023

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • . Unfortunately, with this catalyst, repeatability problems were detected (yield fluctuation of approximately 20%) which could be assigned to the low solubility of this catalyst in toluene. In order to overcome these problems, we synthesized triruthenium carbonyl complexes with phosphine ligand(s), namely
  • (triethoxysilyl)ethyl)phosphine L1 or triphenylphosphine [40][41][42]. Their synthesis, well-described in the literature, is detailed in Supporting Information File 1 (pp. S3–S6). Moreover, a kinetic study carried out in batch in the presence of the [Ru3(CO)11(L1)] (comp1), [Ru3(CO)10(L1)2] (comp2) or [Ru3(CO)9
  • °C in toluene for 1 h with 0.33 equiv of comp4 [Ru3(CO)11(PPh3)], a catalyst analogue to comp1 but bearing a less expensive phosphine ligand (Scheme 5A). The chosen ratio of imine to catalyst was consistent with the stoichiometric amounts needed to form the postulated intermediate. The temperature of
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023
Other Beilstein-Institut Open Science Activities