Search results

Search for "reaction mechanism" in Full Text gives 543 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • Stern–Volmer constant (Ksv = 1146 M−1 with acid vs Ksv = 603 M−1 without acid). The reaction mechanism continues with the fragmentation of 33 into radical 34. From radical 34 the annulation reaction initiates via intermolecular radical addition, resulting in the formation of intermediate 35. After
PDF
Album
Perspective
Published 21 Feb 2024

Synthesis of spiropyridazine-benzosultams by the [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes

  • Wenqing Hao,
  • Long Wang,
  • Jinlei Zhang,
  • Dawei Teng and
  • Guorui Cao

Beilstein J. Org. Chem. 2024, 20, 280–286, doi:10.3762/bjoc.20.29

Graphical Abstract
  • 4aa [35] was isolated in 62% yield (Scheme 4). On the basis of the transformation of 3aa to 4aa, a tentative reaction mechanism is proposed. As shown in Scheme 5, the spiropyridazine-benzosultam 3aa was firstly oxidized to intermediate A. Next, an aziridine was formed with the hydrolysis of the amide
  • regioselectivity. Comparision of previous work with this work. The effects of substituent groups on the [4 + 2] annulation reaction. Reaction conditions: 1 (1.0 mmol), 2 (1.5 mmol), Et3N (2.0 mmol), MeCN (10.0 mL), 25 °C, 2.0 h. Gram-scale synthesis of 3aa. The transformation of 3aa. The reaction mechanism of the
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2024

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  • into the corresponding bis(fulleroid) product after 4 h of reaction (Figure S1 in Supporting Information File 1). Importantly, the observation of this intermediate represents an experimental proof of the proposed reaction mechanism. Confirmation that only one unit of 1a reacted with C70 in the reaction
  •  1), unveiled the following reaction mechanism: initially, an oxidative coupling of the two alkyne moieties of our model 1a leads to the formation of INT 1, as previously reported [33]. This step, with a Gibbs energy barrier of 25.7 kcal·mol−1, is the rate-determining step for this process. Next, INT
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N,N-diacyl-β-amino esters

  • Youlong Du,
  • Haibo Mei,
  • Ata Makarem,
  • Ramin Javahershenas,
  • Vadim A. Soloshonok and
  • Jianlin Han

Beilstein J. Org. Chem. 2024, 20, 212–219, doi:10.3762/bjoc.20.21

Graphical Abstract
  • . Control experiments. Proposed reaction mechanism. Scale-up synthesis. Optimization of reaction conditions.a Supporting Information Supporting Information File 8: Experimental details and spectral data. Funding We gratefully acknowledge the financial support from the National Natural Science Foundation
PDF
Album
Supp Info
Letter
Published 02 Feb 2024

Comparison of glycosyl donors: a supramer approach

  • Anna V. Orlova,
  • Nelly N. Malysheva,
  • Maria V. Panova,
  • Nikita M. Podvalnyy,
  • Michael G. Medvedev and
  • Leonid O. Kononov

Beilstein J. Org. Chem. 2024, 20, 181–192, doi:10.3762/bjoc.20.18

Graphical Abstract
  • structure and the reaction mechanism are the keys to understanding chemical reactivity and selectivity [65][66][67]. In the area of carbohydrate chemistry, a lot of efforts are devoted to finding relationships between the fine details of molecular structures of both glycosylation partners (glycosyl donor
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Tandem Hock and Friedel–Crafts reactions allowing an expedient synthesis of a cyclolignan-type scaffold

  • Viktoria A. Ikonnikova,
  • Cristina Cheibas,
  • Oscar Gayraud,
  • Alexandra E. Bosnidou,
  • Nicolas Casaretto,
  • Gilles Frison and
  • Bastien Nay

Beilstein J. Org. Chem. 2024, 20, 162–169, doi:10.3762/bjoc.20.15

Graphical Abstract
  • photooxygenation, Hock rearrangement and Friedel–Crafts reaction, which is supposed to proceed through aldehyde 3 (see further discussion below on the reaction mechanism). To complete this exploratory work, we envisaged to add an external aromatic nucleophile to the reaction mixture, namely 1,3,5-trimethoxybenzene
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2024

Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides

  • Changdong Shao,
  • Chen Ma,
  • Li Li,
  • Jingyi Liu,
  • Yanan Shen,
  • Chen Chen,
  • Qionglin Yang,
  • Tianyi Xu,
  • Zhengsong Hu,
  • Yuhe Kan and
  • Tingting Zhang

Beilstein J. Org. Chem. 2024, 20, 155–161, doi:10.3762/bjoc.20.14

Graphical Abstract
  • gram-scale preparation was carried out using 1a, that afforded the desired product in 96% yield (Scheme 4, reaction 4). To gain more insight into the reaction mechanism, several control experiments were carried out (Scheme 5). On one hand, the failure of substrates 10–15 to participate in the reaction
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2024
Graphical Abstract
  • generalizing the elucidated reaction mechanism to other [2 + 2] CA–RE reactions involving TCNE and TCNQ as electrophiles might be difficult. They emphasized the significance of considering a pre-equilibrium state of the charge-transfer complexes between the alkynes and alkenes and mentioned that the
PDF
Album
Review
Published 22 Jan 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • derivatives. UV–vis spectra of substrates; [1a] 0.33 M, [2a] 0.11 M. Selected works for the construction of dihydropyrido[1,2-a]indolones and current methodology. Substrate scope of the cascade reaction. Radical trapping experiment. Plausible reaction mechanism. Optimization of reaction conditions.a
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[c]quinolizinium ions

  • Julika Schlosser,
  • Olga Fedorova,
  • Yuri Fedorov and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2024, 20, 101–117, doi:10.3762/bjoc.20.11

Graphical Abstract
  • presence of the corresponding radical scavengers. As there is no obvious reaction mechanism for the direct formation of C-radicals upon irradiation of 3f it is proposed that the reaction of the initially formed hydroxyl radicals with the benzoquinolizinium 3f leads to the formation of the C-centered
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Electron-beam-promoted fullerene dimerization in nanotubes: insights from DFT computations

  • Laura Abella,
  • Gerard Novell-Leruth,
  • Josep M. Ricart,
  • Josep M. Poblet and
  • Antonio Rodríguez-Fortea

Beilstein J. Org. Chem. 2024, 20, 92–100, doi:10.3762/bjoc.20.10

Graphical Abstract
  • 20 Å) and a time step of 0.144 fs. We used the metadynamics technique to analyze the dimerization reaction mechanism [28][29][30]. The collective variable (CV) considered for the exploration of the free-energy surface was the coordination number of nine C atoms of one C60 (those that are involved in
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Identification of the p-coumaric acid biosynthetic gene cluster in Kutzneria albida: insights into the diazotization-dependent deamination pathway

  • Seiji Kawai,
  • Akito Yamada,
  • Yohei Katsuyama and
  • Yasuo Ohnishi

Beilstein J. Org. Chem. 2024, 20, 1–11, doi:10.3762/bjoc.20.1

Graphical Abstract
  • strongly support our previous observation that AvaA7 showed a preference for NADPH as a cofactor [13][29]. In addition, CmaA6 could be an attractive target for understanding the reaction mechanism of ATP-dependent diazotase. CmaA6 could also be an ancestor for generating useful biocatalysts to synthesize
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Construction of diazepine-containing spiroindolines via annulation reaction of α-halogenated N-acylhydrazones and isatin-derived MBH carbonates

  • Xing Liu,
  • Wenjing Shi,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1923–1932, doi:10.3762/bjoc.19.143

Graphical Abstract
  • and proceeds through a by base-promoted annulation reaction of α-halogenated N-acylhydrazones and isatin-derived MBH carbonates. The reaction mechanism of this formal [4 + 3] annulation includes the in situ generated allylic ylide, nucleophilic substitution, Michael additon, and elimination processes
  • cyclic 1,2-diazepine ring and the methylene unit is connected to the 3-positon of the oxindole moiety. On the basis of the current results and previous works [54][55][56][57][58][59][60][61], a reaction mechanism for the formation of the spiro[indoline-3,5'-[1,2]diazepines] has been proposed and is
  • elimination of a proton and the Lewis base. Obviously, the spiro compounds 5 and 7 are formed by a similar reaction mechanism. Additionally, the method was applied to a gram-scale reaction of α-halogenated p-toluenesulfonylhydrazone 6c and MBH nitrile of isatin 2c under the standard conditions (Scheme 6). The
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2023

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • 3a was confirmed by the SC-XRD analysis, which showed that the addition site of addendum was indeed at the C10 position of La@C2v-C82 (Figure 5). The La@C2v-C82 anion can act as an electron donor and a nucleophile. To confirm the reaction mechanism, charge density and the p-orbital axis vector (POAV
  • , the C10, C14, and C18 atoms have larger spin densities (C10: 0.032, C14: 0.023, C18: 0.030) [34][35] than the C1 and C2 atoms (C1: 0.002, C2: 0.016) in La@C2v-C82 (Figure 6b). These results suggest that the reaction mechanism involving the electron transfer from the La@C2v-C82 anion to benzyl bromide
  • derivatives followed by the radical coupling reaction is more plausible for the formation of the corresponding adducts rather than the SN2 reaction mechanism of the La@C2v-C82 anion with benzyl bromide derivatives. Conclusion The reaction of La@C2v-C82 anion with benzyl bromide derivatives 1 at 110 °C
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Substituent-controlled construction of A4B2-hexaphyrins and A3B-porphyrins: a mechanistic evaluation

  • Seda Cinar,
  • Dilek Isik Tasgin and
  • Canan Unaleroglu

Beilstein J. Org. Chem. 2023, 19, 1832–1840, doi:10.3762/bjoc.19.135

Graphical Abstract
  • reaction mechanism of the presented method was studied on model reactions by electrospray-ionization time-of-flight (HRESI–TOF) mass spectral analysis in a timely manner. The analytical results indicated that the observed azafulvene-ended di- and tripyrrolic intermediates are responsible for the formation
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Decarboxylative 1,3-dipolar cycloaddition of amino acids for the synthesis of heterocyclic compounds

  • Xiaofeng Zhang,
  • Xiaoming Ma and
  • Wei Zhang

Beilstein J. Org. Chem. 2023, 19, 1677–1693, doi:10.3762/bjoc.19.123

Graphical Abstract
  • symmetry. The stereochemistry of the products was confirmed by X-ray crystal structure and NMR analysis. The reaction mechanism shown in Scheme 11 suggests that a semi-stabilized AMY 16 generated from the reaction of glycine and arylaldehydes undergoes a [3 + 2] cycloaddition with 14a via the favorable
  • olefinic oxindoles to replace maleimides, the reactions gave spiro[indoline-tetrahydropyrrolothiazole] products 30 in 55–70% with greater than 4:1 dr [76]. The reaction mechanism suggests that the reaction of cysteine with arylaldehydes gives N,S-acetals 27 which convert to AMYs 28 after decarboxlyation
  • -oriented synthesis (DOS) [82][83][84][85][86][87][88]. The work presented in this paper may also be helpful to understand the reaction mechanism and stereoselectivity of semi-stabilized N–H-type AMYs. We hope the new development for 1,3-dipolar cycloaddition chemistry can be used for the synthesis of
PDF
Album
Perspective
Published 06 Nov 2023

Lewis acid-promoted direct synthesis of isoxazole derivatives

  • Dengxu Qiu,
  • Chenhui Jiang,
  • Pan Gao and
  • Yu Yuan

Beilstein J. Org. Chem. 2023, 19, 1562–1567, doi:10.3762/bjoc.19.113

Graphical Abstract
  • . It was found that the desired product could be obtained in 87% yield (Scheme 4). Next, some control experiments were carried out to study the reaction mechanism. We found that the reaction of compound 3a could not be inhibited by TEMPO and BHT under the standard conditions. Therefore, it is assumed
  • atmosphere, 90 °C, 24 h. Reaction substrate scope of quinolines. Conditions: 1a (0.1 mmol, 1 equiv), 2 (0.2 mmol, 2 equiv), AlCl3 (0.3 mmol, 3 equiv), NaNO2 (1 mmol, 10.0 equiv), DMAc (1.0 mL), N2 atmosphere, 90 °C, 24 h. Gram scale reaction. Control experiments and possible reaction mechanism. Optimization
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2023

Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent

  • Stéphanie Hesse

Beilstein J. Org. Chem. 2023, 19, 1537–1544, doi:10.3762/bjoc.19.110

Graphical Abstract
  •  2, entry 5). This observation demonstrates the positive role of proline on the reaction mechanism but clearly indicates that it is not sufficient. In fact, the exact role of DES in this reaction is still not clear as ʟ-proline may act as a catalyst via an iminium pathway as previously described [21
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2023

Unraveling the role of prenyl side-chain interactions in stabilizing the secondary carbocation in the biosynthesis of variexenol B

  • Moe Nakano,
  • Rintaro Gemma and
  • Hajime Sato

Beilstein J. Org. Chem. 2023, 19, 1503–1510, doi:10.3762/bjoc.19.107

Graphical Abstract
  • offer many valuable insights from a fundamental organic chemistry perspective. The terpene cyclization cascade generally involves a multistep domino-type reaction. Therefore, it is challenging to reveal the detailed reaction mechanism solely by an experimental method. To address this issue
  • as the C–H–π interaction between the carbocation intermediate and the Phe residue of terpene cyclase in the biosynthesis of sesterfisherol [21], and the intricated rearrangement reaction mechanism promoted by the equilibrium state of the homoallyl cation and the cyclopropylcarbinyl cation in the
  • aspects. First, this cyclization cascade involves a prenyl side chain that do not participate in the cyclization cascade. This type of terpene compounds has already been reported, such as santalene, bergamotene, mangicol, etc. The idea that the reaction mechanism changes due to differences in the prenyl
PDF
Album
Supp Info
Letter
Published 28 Sep 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • 102 were obtained in moderate to excellent yields with good to excellent enantioselectivities (Scheme 42) [76]. It should be noted that the authors did not define the exact role of the organocatalyst in the reaction mechanism. Transition-metal-free C–H sulfenylation of electron-rich arenes 103 by N
PDF
Album
Review
Published 27 Sep 2023

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • column chromatography to give the coupling product 3. Selected natural products and pharmaceuticals bearing acyloins. Proposed reaction mechanism. Strategies for the synthesis of α-trifluoromethyl acyloins. Substrate scope. Standard conditions: a solution of alkyl carboxylic acid 1 (0.4 mmol), 2 (0.6
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • ether α-C–H bond. In the presence of Cu(II), the C(sp2)–C(sp3) coupling of pyridine N-oxides and coumarins with cyclic ethers could be achieved under mild conditions (Scheme 13) [63][64]. These reactions do not all follow the reaction mechanism of the oxidative olefination of simple ethers. The role of
  • terminal alkynyl aldehydes with ethers in the presence of CuCl2 and TBHP (Scheme 15b) [68]. The reaction is compatible with various functional groups including cyclic ethers and open chain ethers. Studies on the reaction mechanism showed that the reaction is a catalytic cycle involving a radical process
  • the reaction mechanism supported by DFT calculations and concluded that FeF2 plays an important redox role in assisting the cleavage of oxidants and the oxidation of carbon radicals to cationic intermediates of oxygen. CDC reactions between C(sp3)–H/C(sp)–H bonds catalyzed by iron have been reported
PDF
Album
Review
Published 06 Sep 2023

Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita–Baylis–Hillman (MBH) alcohols and acetates

  • Olfa Mhasni,
  • Jalloul Bouajila and
  • Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251–1258, doi:10.3762/bjoc.19.93

Graphical Abstract
  • elimination of imidazole (2a) finally providing the allylated derivative 6a (Scheme 2) [24][25][26][31]. It is notable, that such reaction mechanism involving the intermediate I was previously explored by Smith [32] and supported by studies of Tamura [33]. Next, in order to explore the scope of the above
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2023

Selective construction of dispiro[indoline-3,2'-quinoline-3',3''-indoline] and dispiro[indoline-3,2'-pyrrole-3',3''-indoline] via three-component reaction

  • Ziying Xiao,
  • Fengshun Xu,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1234–1242, doi:10.3762/bjoc.19.91

Graphical Abstract
  • substituent. A plausible reaction mechanism is proposed to explain the formation of the different spirooxindoles. Keywords: cascade reaction; dimedone; isatin; 3-methyleneoxindole; multicomponent reaction; spirooxindole; Introduction Spirooxindole is one important privileged structural skeleton and is found
  • to explain the formation of different cyclic compounds, a plausible reaction mechanism was proposed in Scheme 2 on the basis of the present experiments and the previous works [51][52][53]. Firstly, 3-isatyl-1,4-dicarbonyl compound 1 was converted to a carbanion in the presence of base. In the
  • . This reaction provided efficient synthetic protocols for the synthesis of dispiro[indoline-3,2'-quinoline-3',3''-indoline] and dispiro[indoline-3,2'-pyrrole-3',3''-indoline] derivatives. A plausible reaction mechanism was proposed to explain the selective formation of the different polycyclic compounds
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • studies revealed that the C2–H bond of pyrrole did not participate in the rate-determining step. This led the authors to propose a multi-step reaction mechanism, where irradiation of an initial halogen-bonded EDA complex 47 led directly to iodocyclobutane 48 (Figure 10). Reductive elimination of
PDF
Album
Review
Published 07 Aug 2023
Other Beilstein-Institut Open Science Activities