Search results

Search for "substitution reaction" in Full Text gives 139 result(s) in Beilstein Journal of Organic Chemistry.

Pd-Catalyzed asymmetric allylic amination with isatin using a P,olefin-type chiral ligand with C–N bond axial chirality

  • Natsume Akimoto,
  • Kaho Takaya,
  • Yoshio Kasashima,
  • Kohei Watanabe,
  • Yasushi Yoshida and
  • Takashi Mino

Beilstein J. Org. Chem. 2025, 21, 1018–1023, doi:10.3762/bjoc.21.83

Graphical Abstract
  • chirality, such as N-alkyl-N-cinnamyl-type chiral ligands 4 [28][29] and 5 [30], and a P,olefin-type chiral ligand 6 [31] with a cinnamoyl group instead of a cinnamyl group. In particular, the chiral ligand 6 is effective in the Pd-catalyzed asymmetric allylic substitution reaction of allylic esters with
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2025

Acyclic cucurbit[n]uril bearing alkyl sulfate ionic groups

  • Christian Akakpo,
  • Peter Y. Zavalij and
  • Lyle Isaacs

Beilstein J. Org. Chem. 2025, 21, 717–726, doi:10.3762/bjoc.21.55

Graphical Abstract
  • to a sulfate group. The synthetic route to C1 starts with the double electrophilic aromatic substitution reaction of methylene-bridged glycoluril tetramer (TetBCE) with W1 in TFA/Ac2O 1:1 which adds the sidewalls and transforms the OH groups into OAc groups to give TetW1OAc in 71% yield as described
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2025

Recent advances in allylation of chiral secondary alkylcopper species

  • Minjae Kim,
  • Gwanggyun Kim,
  • Doyoon Kim,
  • Jun Hee Lee and
  • Seung Hwan Cho

Beilstein J. Org. Chem. 2025, 21, 639–658, doi:10.3762/bjoc.21.51

Graphical Abstract
  • stereoselective allylic substitution reaction with organometallic species 9 bearing a secondary carbon–metal bond has rarely been reported, despite its potential to enable complementary formation of the stereogenic center derived from nucleophiles. These reactions face significant challenges due to the relatively
PDF
Album
Review
Published 20 Mar 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • pairs in glycosylation mechanisms was first reported by Rhind-Tutt and Vernon [44], and later reiterated by various authors, including the seminal graphical analysis of Lemieux and co-workers [45][46][47]. Thus, complete categorisation of the reaction in either of the subdomains of substitution reaction
PDF
Album
Review
Published 17 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • spectroscopy techniques. In order to show the universality of the substitution reaction, MBH maleimides of isatins 4 were also employed in the reaction. In the absence of any base as promoter, the reaction of MBH maleimides of isatins with various aromatic amines in toluene at 65 °C gave the expected
  • , the base-promoted dimerization of MBH carbonates of isatin afforded the ethylene-bridged bis(3-methylene)oxindole derivatives with nearly 4:1 ratios. This reaction not only clarified the essence of the substitution reaction of MBH carbonates of isatin with various N-, P-containing nucleophiles, but
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

gem-Difluorovinyl and trifluorovinyl Michael acceptors in the synthesis of α,β-unsaturated fluorinated and nonfluorinated amides

  • Monika Bilska-Markowska,
  • Marcin Kaźmierczak,
  • Wojciech Jankowski and
  • Marcin Hoffmann

Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247

Graphical Abstract
  • was to be evidenced by a substitution reaction at the alpha position. We started testing the different bases with lithium bis(trimethylsilyl)amide [39]. The reactions did not take place in the presence of LiHMDS (Table 1, entries 1 and 2), using either benzyl bromide or methyl iodide as electrophiles
  • also tried to perform a substitution reaction by treating compounds 1a and 2a with tert-BuLi, employing methyl iodide as the electrophile. However, similar to previous reactions, this did not yield substitution products at the alpha position, but to the addition–elimination reaction products. More
PDF
Album
Supp Info
Letter
Published 15 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • terminal alkyne is the active species in the reactions. In this regard, merging the unique feature of Cu-catalyzed propargylic substitution with allylic substitution is a feasible solution to the challenge, which will represent a new sort of substitution reaction. From 2022, the Cu-catalyzed yne-allylic
PDF
Album
Review
Published 31 Oct 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • nucleophilic substitution reaction between cyanuric chloride and 4-aminophenylphosphonate or 4-hydroxyphenylphosphonate derivatives. These synthesized dopants were used to prepare the modified Nafion membranes using a casting methodology. Almodovar and Tomé reported the synthesis and characterization of nine
PDF
Album
Editorial
Published 28 Oct 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • corresponding thiol [35][36][37][38], in the nucleophilic substitution reaction in the aromatic ring of catechol [39][40] or under electrochemical conditions [41][42][43]. An anodic activation of catechols in the presence of a thiol leads to S-functionalized catechols with triazole, triazine, pyrimidine
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Synthesis of new representatives of A3B-type carboranylporphyrins based on meso-tetra(pentafluorophenyl)porphyrin transformations

  • Victoria M. Alpatova,
  • Evgeny G. Rys,
  • Elena G. Kononova and
  • Valentina A. Ol'shevskaya

Beilstein J. Org. Chem. 2024, 20, 767–776, doi:10.3762/bjoc.20.70

Graphical Abstract
  • single pentafluorophenyl ring was prepared through the regioselective nucleophilic aromatic substitution reaction of the p-fluorine atoms in 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin with 9-mercapto-m-carborane. The reaction of this porphyrin with sodium azide led to the selective substitution of
  • next studied the modification of the pentafluorophenyl substituents with carborane clusters via the SNAr substitution reaction with carborane nucleophiles [17][24][25][26][27]. These reactions are well studied for porphyrin 1 [17][24][25][26][27] to afford the corresponding carborane derivatives
  • fluorophenylporphyrin substituents via the boron atom. At the same time the SNAr substitution reaction for the azido-substituted porphyrin 2 with mercaptocarborane 4 also afforded the amino-substituted porphyrin 5 in 32% yield (Scheme 2). During the reaction the reduction of the azide group under the action of
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2024

Facile approach to N,O,S-heteropentacycles via condensation of sterically crowded 3H-phenoxazin-3-one with ortho-substituted anilines

  • Eugeny Ivakhnenko,
  • Vasily Malay,
  • Pavel Knyazev,
  • Nikita Merezhko,
  • Nadezhda Makarova,
  • Oleg Demidov,
  • Gennady Borodkin,
  • Andrey Starikov and
  • Vladimir Minkin

Beilstein J. Org. Chem. 2024, 20, 336–345, doi:10.3762/bjoc.20.34

Graphical Abstract
  • University, 1 Pushkin St., 355017, Stavropol, Russian Federation 10.3762/bjoc.20.34 Abstract A convenient method for the synthesis of a series of 2-(arylamino)-3H-phenoxazin-3-ones based on the nucleophilic substitution reaction between sterically crowded 3H-phenoxazin-3-one and arylamines performed by
  • the crystalline samples, which is otherwise typical for solid-state reaction, was employed in this case. As seen in Scheme 2, the nucleophilic substitution reaction occured in good yield and with no restrictions in terms of amine basicity. The molecular structures of compounds 4c,d,f were determined
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2024

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • hydride resulted in the formation of the oxepine ring by a double substitution reaction, to yield the desired dinaphthooxepine 33. The non-planar character of dinaphthooxepine bisimides was confirmed by X-ray crystal structure, and stability towards thermal or photoactivation was also established. Cyclic
PDF
Album
Review
Published 15 Feb 2024

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • reaction is believed to occur via electron transfer, followed by the radical coupling of La@C2v-C82 and benzyl radicals, rather than by bimolecular nucleophilic substitution reaction of La@C2v-C82 anion with 1. Keywords: electron transfer; metallofullerene; radical; reduction; Introduction Fullerenes
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • ZnMe2 (entries 9 and 10). This difference can be ascribed to a less favorable homolytic substitution reaction of ZnMe2 in relation to its higher analogues and is in line with previous literature observations [11]. The configuration of the major diastereomer was determined by chemical correlation (Scheme
  • -promoted tandem 1,4-addition–electrophilic substitution reaction between dialkylzinc reagents and α-(aminomethyl)acrylates (N-(tert-butanesulfinyl) derivatives shown). Preparation of α-(aminomethyl)acrylates with free N–H bonds. Air-promoted 1,4-addition of Et2Zn onto α-(aminomethyl)acrylates having free N
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Organic thermally activated delayed fluorescence material with strained benzoguanidine donor

  • Alexander C. Brannan,
  • Elvie F. P. Beaumont,
  • Nguyen Le Phuoc,
  • George F. S. Whitehead,
  • Mikko Linnolahti and
  • Alexander S. Romanov

Beilstein J. Org. Chem. 2023, 19, 1289–1298, doi:10.3762/bjoc.19.95

Graphical Abstract
  • containing a rigid benzoguanidine ligand in its molecular structure. Results and Discussion Synthesis and structure 4BGIPN was prepared in 70% yield by aromatic nucleophilic substitution reaction from 2,4,5,6-tetrafluoroisophthalonitrile and 5H-benzo[d]benzo[4,5]imidazo[1,2-a]imidazole (benzoguanidine) after
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • individual compounds but does in fact show additional charge-transfer bands from the preassembly. After electron transfer from *PC1•− to 1d, the C(sp2)–Br bond is cleaved and the aryl radical readily reacts with B2pin2 in a radical substitution reaction yielding the borylated product 17k and a Bpin radical
PDF
Album
Review
Published 28 Jul 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • first reported synthesis of imipramine (3) by Schindler and Häfliger [76] proceeded by alkylation of 2a by alkyl halides. Selected N-alkylations of 1a and 2a are included in Scheme 33. N-Allylation of 1a or 2a with allyl bromide (143) can be achieved by a base-promoted substitution reaction (Scheme 33A
PDF
Album
Review
Published 22 May 2023

Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: access to pyrrolo[2,1-b][1,3]benzothiazoles

  • Ekaterina A. Lystsova,
  • Maksim V. Dmitriev,
  • Andrey N. Maslivets and
  • Ekaterina E. Khramtsova

Beilstein J. Org. Chem. 2023, 19, 646–657, doi:10.3762/bjoc.19.46

Graphical Abstract
  • ) [32]. The third group of approaches to the PBTA scaffold includes only one example, the intramolecular radical substitution reaction in 1-(2-bromophenyl)-5-(butylsulfanyl)pyrrolidin-2-one (Scheme 3, entry 13) [8]. The fourth group of approaches to the PBTA scaffold is the intramolecular cyclization of
  • proceeds through a different pathway from the one to pyrrolobenzothiazoles 3, 7, and 12. Biologically active PBTAs. Electrophilic centers in FPDs. Approaches to PBTAs via annulation of benzothiazoles. Approaches to PBTAs via annulation of o-aminothiophenols. Approach to PBTAs via radical substitution
  • reaction in 1-(2-bromophenyl)-5-(butylsulfanyl)pyrrolidin-2-one. Approach to PBTAs via intramolecular cyclizations of 1-(2-thiophenyl)pyrroles. A new approach to PBTAs via nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines. Reaction of APBTT 1a with methanol (2a). Derivatization of
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • , the authors noted the reaction was stereoselective for the trans-addition product. Mechanistically, the authors proposed the reaction begins with the Cu-mediated substitution reaction of iodobenzene (66a) with KSCN to afford phenyl thiocyanate (70). The Cu complex can then undergo oxidative addition
PDF
Album
Review
Published 24 Apr 2023

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • summarized so that the chemists, researchers, and pharmaceutical industries find its effectiveness in near future for the synthesis of potent, novel, and non-toxic drug molecules. Keywords: functionalization; imidazole N-oxide; mechanistic insights; multicomponent reaction; nucleophilic substitution
  • reaction; Introduction Imidazole is one of the best-known heterocyclic compounds. Derivatives of imidazole are powerful molecules taking part in numerous biochemical processes and exhibiting distinctive biological activities [1][2]. The imidazole motif can be seen in several natural compounds like
PDF
Album
Review
Published 22 Nov 2022

A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH4/I2 system

  • Lin Chen,
  • Xuan Zhou,
  • Zhiyong Chen,
  • Changxu Wang,
  • Shunjie Wang and
  • Hanbing Teng

Beilstein J. Org. Chem. 2022, 18, 1032–1039, doi:10.3762/bjoc.18.104

Graphical Abstract
  • cyanoformamides [75]. However, all of these works are primarily focused on the substitution reaction of N-substituted carbonylimidazoles. In our previous work, we conveniently prepared formamides by reducing N-substituted carbonylimidazoles with NaBH4 [62] (Scheme 1). The reaction mechanism shows that the H− ion
  • acted as a nucleophile to attack the carbonyl carbon to cause the imidazolium ion to leave without reducing the carbonyl group. Although this work expands the application of N-substituted carbonylimidazoles, the reaction can still be regarded as a substitution reaction, which is attributed to the weak
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Molecular diversity of the base-promoted reaction of phenacylmalononitriles with dialkyl but-2-ynedioates

  • Hui Zheng,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 991–998, doi:10.3762/bjoc.18.99

Graphical Abstract
  • , phenacylmalononitrile is also a readily available substrate, which can be easily prepared through a base-promoted substitution reaction of phenacyl bromide with malononitrile under mild conditions [11][12][13][14][15][16]. In many practical cases, phenacylmalononitriles could be conveniently generated in situ by
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • )aminoalkanoic acids 86 (Scheme 15) [35][36]. This is a convenient way to synthesize γ-phosphonolactams 85. They further extended their method to synthesize cyclic O,O- and O,S-bidentate ligands with a P–N–P backbone. The substitution reaction of 3-bromopropylamine hydrogen bromide (87) and chloroethoxyphosphine
PDF
Album
Review
Published 22 Jul 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • inexpensive and easy to handle Se powder as the Se source. The reaction proceeded with terminal alkynes having various substitutions, such as aryl, vinyl, and alkyl groups. The obtained alkynyl imidazopyridinyl selenide was found to undergo nucleophilic substitution reaction on Se atom using organolithium
  • phenyllithium in THF at −78 °C led to a nucleophilic substitution reaction with the elimination of the ethynyl group to form the desired phenylimidazopyridinyl selenide 6a in 49% yield. In the reaction with n-butyllithium, alkyl derivative 6b was isolated in the same way. The reaction of 4aa with the Ruppert
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022
Other Beilstein-Institut Open Science Activities