Search results

Search for "oxidation" in Full Text gives 1380 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Deciphering the mechanism of γ-cyclodextrin’s hydrophobic cavity hydration: an integrated experimental and theoretical study

  • Stiliyana Pereva,
  • Stefan Dobrev,
  • Tsveta Sarafska,
  • Valya Nikolova,
  • Silvia Angelova,
  • Tony Spassov and
  • Todor Dudev

Beilstein J. Org. Chem. 2024, 20, 2635–2643, doi:10.3762/bjoc.20.221

Graphical Abstract
  • hydrogen bonding, although generally not dominant, can influence the complex formation as well [5]. Cyclodextrins form inclusion complexes with polar and non-polar substances of various aggregate states. This incredible versatility, combined with the enhanced stability against oxidation, as well as
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2024

Efficient modification of peroxydisulfate oxidation reactions of nitrogen-containing heterocycles 6-methyluracil and pyridine

  • Alfiya R. Gimadieva,
  • Yuliya Z. Khazimullina,
  • Aigiza A. Gilimkhanova and
  • Akhat G. Mustafin

Beilstein J. Org. Chem. 2024, 20, 2599–2607, doi:10.3762/bjoc.20.219

Graphical Abstract
  • -hydroxy-6-methyluracil, etc.). One of the successful methods for hydroxylation is peroxydisulfate oxidation. By modifying the Elbs reaction through catalysis and the introduction of additional oxidants, we have been able to significantly increase the yields of practically useful compounds. Keywords
  • : oxidation; 6-methyluracil; peroxydisulfate; phthalocyanine catalysts; pyridine; Introduction The Elbs and Boyland–Sims peroxydisulfate oxidation reactions offer a convenient means of introducing the hydroxy function into phenols and aromatic amines [1]. The oxidation of phenol using peroxydisulfate was
  • first demonstrated by Karl Elbs in 1893 [2], with E. Boyland later expanding this reaction to include aromatic amines [3]. Concurrently, the successful oxidation of several pyrimidine derivatives was also reported [4]. Since then, the reaction has been extensively researched on various classes of
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • pharmaceutical drugs and natural products. We classify these advancements into three types: anodic oxidation, cathodic reduction, and paired electrolysis (Figure 1). This review considers direct electrolysis (oxidation or reduction), mediator-induced electrolysis, and metal-catalyzed and photocatalyzed
  • . Review 1 LSF via anodic oxidation To date, the majority of electrosynthetic methods in organic chemistry consists of anodic oxidations. These techniques are generally more robust and can often be performed outside of a glovebox, making them particularly attractive for larger scale applications in
  • industrial settings. An anodic oxidation is frequently employed for C–H functionalization, which can simplify late-stage functionalization strategies. Additionally, many of these synthetic methods do not require precious metals, enhancing their appeal in terms of sustainability and cost-effectiveness
PDF
Album
Review
Published 09 Oct 2024

Visible-light-mediated flow protocol for Achmatowicz rearrangement

  • Joachyutharayalu Oja,
  • Sanjeev Kumar and
  • Srihari Pabbaraja

Beilstein J. Org. Chem. 2024, 20, 2493–2499, doi:10.3762/bjoc.20.213

Graphical Abstract
  • ], spirulina [16], Ti(OiPr)4/t-BuOOH [17], VO(acac)2)/t-BuOOH [18], and enzymatic oxidation [19] etc., which may compromise the environmental benefits (Scheme 1a,b) and take longer reaction times. Alternatively, a new green pathway is necessary for the Achmatowicz reaction to be performed in a faster and safer
  • et al. [22] have demonstrated a combined use of flow and batch processes involving an electrochemical flow cell for the oxidation of furfuryl alcohols and subsequently utilizing the crude electrolysis mixture for hydrolysis in a traditional batch process to get the rearranged Achmatowicz product. As
PDF
Album
Supp Info
Letter
Published 08 Oct 2024

HFIP as a versatile solvent in resorcin[n]arene synthesis

  • Hormoz Khosravi,
  • Valeria Stevens and
  • Raúl Hernández Sánchez

Beilstein J. Org. Chem. 2024, 20, 2469–2475, doi:10.3762/bjoc.20.211

Graphical Abstract
  • ]. In contrast, the protocol reported herein provides 94–98% yield when employing longer chain-containing aldehydes (1c–e). In addition to resorcinol, 2-methylresorcinol is commonly used in resorcin[n]arene synthesis as radical oxidation of the methyl unit in the ArCH3 fragments provides a benzyl
PDF
Album
Supp Info
Letter
Published 02 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • functionalization of amides with alkenes under photoredox conditions. Another viable approach for amide functionalization through photoredox catalysis involves the nucleophilic addition, in the presence of base, of an amide to a radical cation obtained by oxidation of an unfunctionalized alkene moiety (Figure 1A
  • ) [23][24][25]. The nucleophilic attack of the nitrogen atom on the oxidized C=C double bond results in the formation of a radical intermediate after deprotonation. This radical intermediate can proceed through various pathways (e.g., HAT, oxidation) to yield the desired final product. In the
  • functionalization of amides with alkenes under oxidative conditions, the oxidation potential of the alkene plays a pivotal role in the oxidation to a radical cation through photoredox catalysis [26]. Alkenes that are less functionalized possess a higher oxidation potential, necessitating the use of potent
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Hypervalent iodine-mediated cyclization of bishomoallylamides to prolinols

  • Smaher E. Butt,
  • Konrad Kepski,
  • Jean-Marc Sotiropoulos and
  • Wesley J. Moran

Beilstein J. Org. Chem. 2024, 20, 2455–2460, doi:10.3762/bjoc.20.209

Graphical Abstract
  • ]. Iodoethane was also shown to be an effective reagent furnishing the product in up to 56% upon heating to 40 °C (Table 1, entries 11 and 12). It was envisaged that oxidation of iodoethane led to formation of oxidized forms of iodide by C–I-bond cleavage, therefore tetrabutylammonium iodide was utilized to see
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2024

Facile preparation of fluorine-containing 2,3-epoxypropanoates and their epoxy ring-opening reactions with various nucleophiles

  • Yutaro Miyashita,
  • Sae Someya,
  • Tomoko Kawasaki-Takasuka,
  • Tomohiro Agou and
  • Takashi Yamazaki

Beilstein J. Org. Chem. 2024, 20, 2421–2433, doi:10.3762/bjoc.20.206

Graphical Abstract
  • detection of benzaldehyde which was considered to be formed by the NaClO-mediated oxidation of benzyl alcohol generated by hydrolysis. Changing the oxidizing reagent to crystalline NaClO·5H2O nicely solved the problem with the realization of 86% isolated yield of 2b by the utilization of this oxidant (2
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • is produced in situ from the imidoyl chloride 9 [21]. The one-pot oxidation and ring-closure reaction [22][23] to iodoloisoxazolium(III) salt 7OTf and the salt metathesis with sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (NaBArF24) were then realized with 85% and 72% yield, respectively
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Efficient one-step synthesis of diarylacetic acids by electrochemical direct carboxylation of diarylmethanol compounds in DMSO

  • Hisanori Senboku and
  • Mizuki Hayama

Beilstein J. Org. Chem. 2024, 20, 2392–2400, doi:10.3762/bjoc.20.203

Graphical Abstract
  • (Table 1, entry 6). In contrast, zinc was not effective as an anode material in the carboxylation, probably due to competitive electrochemical reduction of zinc ions generated by electrochemical oxidation of the zinc anode. The deposition of a black precipitate was observed visually at the cathode (Table
  • competitively occurs at the cathode, and an excess amount of electricity should therefore be necessary to obtain acceptable results. At the anode, on the other hand, dissolution of magnesium ions by electrochemical oxidation of magnesium metal occurs, preventing electrochemical oxidation of the product and
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • the electrochemical properties of functionalized catechols allows one to suggest the mechanism of their electrooxidation, establish electron transfer centers, and predict antioxidant activity based on electrochemical data. To determine electron-transfer centers, the oxidation potentials of the
  • observed in the range of 0.94–1.25 V. It refers to the oxidation of the catechol moiety to the corresponding o-benzoquinone, as previously shown for related compounds [36]. The second redox transition at 1.55–1.84 V characterizes the oxidation of the sulfide fragment (Scheme 2). To confirm the
  • participation of the catechol group in the first redox transition, the microelectrolysis of 3 was carried out at a controlled potential of 1.35 V in MeCN (2 h, 0.8 F/mol). After electrolysis, a decrease in the current intensity of the first oxidation peak is observed on the CVs of this compound (conversion
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • 24, which supported the hypotheses regarding the selectivity-determining transition states arrangement. It is important to note, that boronic acids 14 are highly sensitive to oxidation by air and could only be purified in air-free conditions and stored in airtight containers. Additionally
  • generated from Togni’s reagent (145) to a double bond of the δ-alkenylamine, followed by intramolecular hydrogen atom transfer and a single-electron oxidation of the intermediate alkyl radical to form an imine that is then reduced by hydrogen donor 147 catalysed by CPA (R)-VAPOL (148). The
PDF
Album
Review
Published 16 Sep 2024

Tandem diazotization/cyclization approach for the synthesis of a fused 1,2,3-triazinone-furazan/furoxan heterocyclic system

  • Yuri A. Sidunets,
  • Valeriya G. Melekhina and
  • Leonid L. Fershtat

Beilstein J. Org. Chem. 2024, 20, 2342–2348, doi:10.3762/bjoc.20.200

Graphical Abstract
  • reagent detects nitrite formed by the enzymatic oxidation of NO) [44][45]. As shown in Figure 3, compounds 1a–e containing an aryl substituent at position 6 exhibited low NO-donor ability (0.3–4.5%). In contrast, compounds 1f–h with an aliphatic fragment showed moderate activity, with the maximum value
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2024

Hydrogen-bond activation enables aziridination of unactivated olefins with simple iminoiodinanes

  • Phong Thai,
  • Lauv Patel,
  • Diyasha Manna and
  • David C. Powers

Beilstein J. Org. Chem. 2024, 20, 2305–2312, doi:10.3762/bjoc.20.197

Graphical Abstract
  • the potential for chemical non-innocence of fluorinated alcohol solvents in NGT catalysis. Keywords: aziridination; electrochemistry; H-bond activation; hypervalent iodine; nitrene transfer; Introduction Hypervalent iodine reagents find widespread application in selective oxidation chemistry due to
  • ), Koser’s reagent (PhI(OH)OTs), Zhdankin’s reagent (C6H4(o-COO)IN3, ABX), and Dess–Martin periodinane (DMP) – and find application in an array of synthetically important transformations including olefin difunctionalization, carbonyl desaturation, alcohol oxidation, and C–H functionalization [3][4
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • sites where benzylic C–H bonds readily undergo metabolism driven by cytochrome P450 oxidases via single-electron oxidation [24]. This metabolic lability may be tempered by hydrogen replacement with deuterium, an almost perfect bio-isosteric replacement (C–H to C–D) which maintains 3D surface, shape and
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

gem-Difluorination of carbon–carbon triple bonds using Brønsted acid/Bu4NBF4 or electrogenerated acid

  • Mizuki Yamaguchi,
  • Hiroki Shimao,
  • Kengo Hamasaki,
  • Keiji Nishiwaki,
  • Shigenori Kashimura and
  • Kouichi Matsumoto

Beilstein J. Org. Chem. 2024, 20, 2261–2269, doi:10.3762/bjoc.20.194

Graphical Abstract
  • University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan 10.3762/bjoc.20.194 Abstract gem-Difluorination of carbon–carbon triple bonds was conducted using Brønsted acids, such as Tf2NH and TfOH, combined with Bu4NBF4 as the fluorine source. The electrochemical oxidation of a Bu4NBF4/CH2Cl2 solution
  • solution of Bu4NBF4/CH2Cl2 containing substrates might also promote the same reactions (Figure 1, reaction 6, electrochemical method). Currently, electrochemistry can be regarded as a promising technique in organic synthesis, because heavy-metal reagents can be avoided for the oxidation or reduction of
  • −’’ equivalents might serve as good reagents for the gem-difluorination of alkynes. Thus, we have examined the electrochemical oxidation of a solution of Bu4NBF4/CH2Cl2 containing 1a (0.5 mmol) in a divided cell using 8 mA or 16 mA (Scheme 1, method B, in-cell method). In-cell method means that EGA was generated
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents

  • Naoki Takeda,
  • Shuichi Akasaka,
  • Susumu Kawauchi and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2024, 20, 2234–2241, doi:10.3762/bjoc.20.191

Graphical Abstract
  • oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) was developed and employed in the same fields of chemical biology [6][7]. On the other hand, the use of the SpAAC in materials science was slow. We developed another class of metal-free click chemistry reactions, such as the [2 + 2
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Selective hydrolysis of α-oxo ketene N,S-acetals in water: switchable aqueous synthesis of β-keto thioesters and β-keto amides

  • Haifeng Yu,
  • Wanting Zhang,
  • Xuejing Cui,
  • Zida Liu,
  • Xifu Zhang and
  • Xiaobo Zhao

Beilstein J. Org. Chem. 2024, 20, 2225–2233, doi:10.3762/bjoc.20.190

Graphical Abstract
  • ) [25] or β-keto esters (Scheme 1a, path 4) [26][27], the aldol reaction between aldehydes and S-ethyl acetothioate followed by oxidation with Dess–Martin periodinane (Scheme 1a, path 5) [28], the hydrolysis of α-oxo ketene dithioacetals (Scheme 1a, path 6) [29] and MgBr2·OEt2-catalyzed acylation of
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2024

Electrochemical allylations in a deep eutectic solvent

  • Sophia Taylor and
  • Scott T. Handy

Beilstein J. Org. Chem. 2024, 20, 2217–2224, doi:10.3762/bjoc.20.189

Graphical Abstract
  • there are many reasons for this renewed interest, two major motivations are the unmatched control of oxidation or reduction potential that can be achieved and the environmentally friendly aspect of having electrons as the only consumed reagent. This latter reason is certainly an advantage in many cases
PDF
Album
Full Research Paper
Published 02 Sep 2024

Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation

  • Andrey R. Galeev,
  • Maksim V. Dmitriev,
  • Alexander S. Novikov and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2024, 20, 2208–2216, doi:10.3762/bjoc.20.188

Graphical Abstract
  • ) substituent in the meta-position [38][39][40][41][42][43]. For example, several methods based on the Michael condensation–oxidation sequence starting from α,β-unsaturated ketones have been described (Scheme 1B) [44][45][46][47][48][49][50]. Recently, several methods have been developed based on the
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Natural resorcylic lactones derived from alternariol

  • Joachim Podlech

Beilstein J. Org. Chem. 2024, 20, 2171–2207, doi:10.3762/bjoc.20.187

Graphical Abstract
PDF
Album
Supp Info
Review
Published 30 Aug 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • irradiation (Scheme 23) [81]. After these pioneering reports mentioned above, many examples of cyclization of 2-isocyanobiaryls using a metal-assisted system [82][83][84][85][86], photoredox system [21][87][88][89][90], or some other oxidation systems [91][92][93] were developed as excellent synthetic methods
  • in which phosphorus-centered radicals generated from diarylphosphine oxides by Mn(OAc)3-assisted oxidation [94] or the photoredox system [95][96][97] were used in the radical cyclization reaction of 2-isocyanobiaryls (Scheme 24). Yadav and Sigh et al. reported the direct synthesis of 6-sulfonylated
PDF
Album
Perspective
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • blocks or their transformation with additional components besides hydrazines is a logical entry to MCR syntheses of pyrazoles. Therefore, 1,3-dielectrophiles encompass 1,3-dicarbonyl compounds and α,β-unsaturated carbonyl compounds, including alkenoyl and alkynoyl systems, across various oxidation states
  • -unsaturated ketone with hydrazine and acetic acid forms a 1-acylpyrazoline, while the chromene moiety and hydrazine form the pyrazole nucleus by ring opening/ring closing cyclocondensation. Upon oxidation with DDQ, the pyrazolylpyrazoline products can be readily converted into the corresponding bispyrazoles
  • -unsaturated cyano derivatives, which in turn can cyclocondense with hydrazines to furnish aminopyrazoles after oxidation. Hasanijedad and Firoozi developed a one-pot process for synthesizing 5-aminopyrazoles 62 in a three-component fashion (Scheme 19) [78]. Interestingly, hydrazine acts both as a Brønsted
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • formation of dimeric side products. Cyclic voltammetry analysis suggested an initial anodic single electron transfer (SET) to radical cation 5, cyclization and deprotonation. Subsequent SET oxidation in solution by 5 led to cation 7. Final deprotonation furnished aromatic cycle 4. In 2022, Zhang et al
  • hydrazones initiated with the SET anodic oxidation of the hydrazone and deprotonation to form the N-centered radical 10. After aza-cyclization on the aromatic ring, a second SET oxidation and deprotonation delivered the heterocycle 9. This mechanism was supported by cyclic voltammetry analysis of a model
  • substrate (1-(diphenylmethylene)-2-(4-nitrophenyl)hydrazine), which displayed three oxidation peaks (0.9, 1.7 and 2.2 V vs Ag+/Ag in HFIP ). The authors assumed that the two first peaks would correspond to the oxidation of 8 to 10 and 11 to 12 and that the oxidation of 10 would be responsible for the final
PDF
Album
Review
Published 14 Aug 2024

Radical reactivity of antiaromatic Ni(II) norcorroles with azo radical initiators

  • Siham Asyiqin Shafie,
  • Ryo Nozawa,
  • Hideaki Takano and
  • Hiroshi Shinokubo

Beilstein J. Org. Chem. 2024, 20, 1967–1972, doi:10.3762/bjoc.20.172

Graphical Abstract
  • CH2Cl2 were examined using cyclic voltammetry (Figure 4). Macrocycle 2a exhibited one reversible oxidation wave at 0.44 V and two reversible reduction waves at −0.85 V and −1.14 V. The electrochemical HOMO–LUMO gap of 2a is 1.29 V, which is larger than that of 1a (1.08 V) [2]. DFT calculations We next
PDF
Album
Supp Info
Letter
Published 12 Aug 2024
Other Beilstein-Institut Open Science Activities