Search results

Search for "aldehyde" in Full Text gives 837 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Oxidation of benzylic alcohols to carbonyls using N-heterocyclic stabilized λ3-iodanes

  • Thomas J. Kuczmera,
  • Pim Puylaert and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 1677–1683, doi:10.3762/bjoc.20.149

Graphical Abstract
  • with common iodine(III) reagents by 1H NMR spectroscopy (Figure 4). After 60 h the measurements revealed a higher yield of aldehyde 4a using 1a (68%) compared to 1c (30%) under the influence of AlCl3. As a comparison, the use of PIDA (5b) and IBA (5c) with the additive resulted in a significantly lower
  • (75%). The ortho-phenyl-substituted aldehyde 4h was isolated in 85% yield, while the ortho-methoxy substrate did not convert to 4i. The ortho-, meta- and para-permutation of a CF3 group showed lower reactivity for the ortho-substituted 4j (53%), while the meta- and para-derivatives 4k and 4l gave
  • higher yields of 84% and 71%, respectively. The steric inhibition of a doubly substituted phenyl ring was observed in a diminished formation of 2,6-dichlorobenzaldehyde (4m) in 39% yield. Naphthalen-2-ylmethanol gave aldehyde 4n in 44% yield. Pyridines 4o and 4p were also compatible and gave good yields
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • [34]. In reductive amination, the substrate is usually an aldehyde or amine. After the formation of the iminium ion, it is reduced with the appropriate reagent to form the N-methylated amino acid. Different methods have been established using for example benzaldehyde as a protection group, sodium
  • cyanoborohydride as a mild reducing agent, and paraformaldehyde as a methylating agent [36]. Methanol can be used as the methylating reagent in other methods. Here, a palladium on carbon (Pd/C) catalyst processes the dehydrogenation of the alcohol to form the corresponding aldehyde. The subsequently formed imine
PDF
Album
Review
Published 18 Jul 2024

New triazinephosphonate dopants for Nafion proton exchange membranes (PEM)

  • Fátima C. Teixeira,
  • António P. S. Teixeira and
  • C. M. Rangel

Beilstein J. Org. Chem. 2024, 20, 1623–1634, doi:10.3762/bjoc.20.145

Graphical Abstract
  • phosphonation of the aldehyde group. To implement this strategy, a reaction between 4-hydroxybenzaldehyde (12) and cyanuric chloride (1) was performed, in toluene with Na2CO3 as base, to obtain compound 19 [58] in very good yield (87%) (Scheme 7). Compound 19 was subjected to similar reaction conditions that
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2024

Generation of multimillion chemical space based on the parallel Groebke–Blackburn–Bienaymé reaction

  • Evgen V. Govor,
  • Vasyl Naumchyk,
  • Ihor Nestorak,
  • Dmytro S. Radchenko,
  • Dmytro Dudenko,
  • Yurii S. Moroz,
  • Olexiy D. Kachkovsky and
  • Oleksandr O. Grygorenko

Beilstein J. Org. Chem. 2024, 20, 1604–1613, doi:10.3762/bjoc.20.143

Graphical Abstract
  • reaction is a three-component condensation of an α-amino heterocycle (e.g., 2-aminopyridine) 1, an aldehyde 2, and an isonitrile 3 providing the corresponding fused imidazoles (e.g., imidazo[1,2-a]pyridines) of general formula 4 (Scheme 1) [18][19][20][21]. Imidazo[1,2-a]pyridines and related heterocycles
  • components of the reaction, the aldehyde and isonitrile, while the steric factor was found to be not significant. The protocol was used to prepare a 790-member compound library with 85% synthesis success rate. Furthermore, a readily available (REAL) chemical space comprising 271 Mln. members was generated
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • was effective for the stereoselective fluorination of benzylic positions ortho to aldehyde substituents (Figure 9). The choice of a bulky amino, transient, directing group dictated the stereochemical outcome and promoted the C–F reductive elimination through an inner-sphere pathway. A competitive C–O
PDF
Album
Review
Published 10 Jul 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • keto function of the hydrazone moiety and the open-chain hemiacetal or aldehyde hydrate in Brønsted acid medium to access 1H-imidazo[5,1-c][1,4]oxazine derivatives (Scheme 1) [21]. Considering that the hydrazone function at C-4 of 4a–r may exist in a tautomeric equilibrium with the corresponding ene
  • (entries 1–7, Table 1). Similarly to what was observed by Yu and co-workers for the intramolecular cyclization of alkynyl aldehyde acetals [28][29], it was found that the use of FeCl3 provided the better result in terms of overall yield (entry 3, Table 1). Moreover, the choice of iron(III) seemed to have
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • simplified form, focuses on the base-induced disproportionation of two molecules of a non-enolizable aromatic and/or aliphatic aldehyde (without an α-hydrogen atom). These aldehydes undergo in the presence of concentrated alkali or other strong bases, a simultaneous oxidation and reduction sequence of two
  • aldehyde molecules, forming an alcohol and an acid [1][2][3][4]. Since its discovery in 1853, the Cannizzaro reaction has emerged as an important reaction in synthetic organic chemistry with intermolecular, crossed, and intramolecular versions as demonstrated by numerous applications. Notably, the
  • Cannizzaro reaction has come across with subtle developments and changes in base modifications leading to compounds of potential interest [5][6]. The intermolecular Cannizzaro reaction is a chemical process in which two molecules of a non-enolizable aldehyde (2R1CHO) are disproportionated by a base to
PDF
Album
Review
Published 19 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  •  21). Styrenes selectively reacted with vinyl ethers in the presence of an acridinium photocatalyst and a diphenyl disulfide HAT catalyst to produce the aldehyde product when exposed to blue LED light. Differently substituted styrenes were examined using this protocol, which produced the aldehyde
  • products in good yield (i.e., 80a–d, 48–80%). Cyclic olefins also performed well under these conditions and generated products with a β-ring moiety (i.e., 80e–g, 60–64%), which would have been challenging to synthesize otherwise. 2-Substituted ethyl vinyl ethers also provided α-branched aldehyde products
  • in decent yield (i.e., 80h–k, 49–66%). An α,β,γ-trisubstituted aldehyde (i.e., 80l, 65%) was synthesized using an α,β-disubstituted styrene, which could not be produced using the conventional method. The excited photocatalyst *Mes–Acr+ oxidized the styrene to produce the extremely electrophilic
PDF
Album
Review
Published 14 Jun 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • ) [32]. The formation of the products can be explained by Michael reaction (1,4-addition) of 3 to the chromone and ring cleavage to give intermediate G. Subsequent Knoevenagel reaction by attack of the methylene carbon to the aldehyde resulted in the formation of the final products. The regioselective
  • cyclization can be explained by the higher electrophilicity of the aldehyde as compared to the ketone. The yields were in general quite good (51–65%). Relatively low yields (51–52%) were obtained for chromones containing methyl substituents, presumably due to the lower electrophilicity of the chromone based
PDF
Album
Review
Published 29 May 2024

The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids

  • Carolina S. Marques,
  • Aday González-Bakker and
  • José M. Padrón

Beilstein J. Org. Chem. 2024, 20, 1213–1220, doi:10.3762/bjoc.20.104

Graphical Abstract
  • , aliphatic chain on the acid component and small aliphatic chain on the aldehyde component to increase the antiproliferative activity. Also, benzyl isocyanide was favored over the aliphatic one (Scheme 1A) [16]. Considering the value of amide groups in drug discovery [19], the feasibility of running the
  • efficient Ugi4CR approach. Easy access to isatin from the 3-protected oxindole scaffold was demonstrated using mild reaction conditions. Flexibility of the carboxylic acid component and also the carbonyl one (ketone/aldehyde) was exhibited in the library of Ugi adducts obtained in moderate to good yields
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Cofactor-independent C–C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis

  • Jinmin Gao,
  • Liyuan Li,
  • Shijie Shen,
  • Guomin Ai,
  • Bin Wang,
  • Fang Guo,
  • Tongjian Yang,
  • Hui Han,
  • Zhengren Xu,
  • Guohui Pan and
  • Keqiang Fan

Beilstein J. Org. Chem. 2024, 20, 1198–1206, doi:10.3762/bjoc.20.102

Graphical Abstract
  • 2 via Baeyer–Villiger oxidation, followed by hydrolysis to yield another crucial aldehyde/acid intermediate 3 [11][15]. Commencing from 3, diverse ring rearrangement reactions can occur, leading to the formation of distinct products. In the AlpJ-catalyzed reaction, compound 3 undergoes ring
  • aldehyde–acid intermediate 11. In JadG-catalyzed reactions, compound 11 participated in a reaction with ʟ-isoleucine to yield 6. In contrast, in AlpJ- or Flu17-catalyzed reactions, 11 underwent decarboxylation and an aldol reaction, giving rise to intermediate 12. Subsequent dehydration of 12 led to the
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Bismuth(III) triflate: an economical and environmentally friendly catalyst for the Nazarov reaction

  • Manoel T. Rodrigues Jr.,
  • Aline S. B. de Oliveira,
  • Ralph C. Gomes,
  • Amanda Soares Hirata,
  • Lucas A. Zeoly,
  • Hugo Santos,
  • João Arantes,
  • Catarina Sofia Mateus Reis-Silva,
  • João Agostinho Machado-Neto,
  • Leticia Veras Costa-Lotufo and
  • Fernando Coelho

Beilstein J. Org. Chem. 2024, 20, 1167–1178, doi:10.3762/bjoc.20.99

Graphical Abstract
  • in moderate to good yields. With the β-ketoesters prepared, we began the synthesis of the Knoevenagel derivatives. To do so, we employed an adapted protocol from the literature. Using 1.00 equiv of β-ketoester, 1.50 equiv of aldehyde, 0.60 equiv of acetic acid, and 0.25 equiv of piperidine, the
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • , respectively. The proposed mechanism suggested that the active amido species (Mn5-a) was formed by treating Mn5 with the base. Then, the alkoxy intermediate Mn5-b is formed by reaction with the alcohol followed by release of an aldehyde and formation of the manganese hydride Mn5-c. The released aldehyde
  • condenses with hydrazine followed by reduction and condensation with another aldehyde to afford the N-substituted hydrazones (Scheme 8). Balaraman and co-workers established a phosphine-free manganese catalyst generated in situ from a manganese precursor and a ligand for the N-alkylation of anilines with
  • homogeneous nature of the catalytic system. The mechanistic investigation suggested that the reaction proceeds via a dehydrogenative pathway confirmed by forming an aldehyde product and H2 gas which was detected by GC. In 2019, Morrill’s group reported the N-alkylation of sulfonamides using Mn1. The reaction
PDF
Album
Review
Published 21 May 2024

Light on the sustainable preparation of aryl-cored dibromides

  • Fabrizio Roncaglia,
  • Alberto Ughetti,
  • Nicola Porcelli,
  • Biagio Anderlini,
  • Andrea Severini and
  • Luca Rigamonti

Beilstein J. Org. Chem. 2024, 20, 1076–1087, doi:10.3762/bjoc.20.95

Graphical Abstract
  • -cored halides can be broadened by converting C–Hal functions into different functional groups. For example, aldehyde and amine functionalities can be readily derived from C(sp3)–Hal functions through hydrolysis–oxidation [13] or substitution [14], respectively. This is of significant interest in the
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

A Diels–Alder probe for discovery of natural products containing furan moieties

  • Alyssa S. Eggly,
  • Namuunzul Otgontseren,
  • Carson B. Roberts,
  • Amir Y. Alwali,
  • Haylie E. Hennigan and
  • Elizabeth I. Parkinson

Beilstein J. Org. Chem. 2024, 20, 1001–1010, doi:10.3762/bjoc.20.88

Graphical Abstract
  • for 18 was more complicated, showing many more side products compared to other tested substrates (see Figure S7 in Supporting Information File 1). We hypothesize this is due to 18 undergoing a reaction in aqueous solutions to generate a geminal diol in place of an aldehyde, as has been previously
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • 1883 and involves its synthesis from phenylhydrazine and an aldehyde or ketone using an appropriate acid catalyst [8]. In the following years, new processes were developed for the synthesis of indole such as the Castro, Bischler, and Larock synthesis etc. [2][9][10]. Carbonylation reactions represent a
PDF
Album
Review
Published 30 Apr 2024

Innovative synthesis of drug-like molecules using tetrazole as core building blocks

  • Jingyao Li,
  • Ajay L. Chandgude,
  • Qiang Zheng and
  • Alexander Dömling

Beilstein J. Org. Chem. 2024, 20, 950–958, doi:10.3762/bjoc.20.85

Graphical Abstract
  • of tetrazole building blocks which provides the handle of alcohol functionality and further oxidation serves as an oxo component in subsequent MCRs (Figure 1d). The synthesis of oxo-tetrazoles was targeted because of the prevalence of the aldehyde substrate in MCRs and their use in medicinal
  • chemistry literature. Results and Discussion First, we planned to provide a number of orthogonally protected tetrazole carbaldehyde building blocks. This should be accomplished by synthesizing the hydroxymethyl precursors by a Passerini-tetrazole synthesis, followed by oxidation to the aldehyde (Figure 1d
  • smoothly and provided moderate to excellent yields of 58–83%. Among this, the tert-octyl-substituted aldehyde exhibited excellent product transformation with a yield of 83% of 3e. Various isocyanides such as benzyl, phenylethyl, tert-octyl and tert-butyl isocyanides participated in the reaction with
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline

  • Jiawei Niu,
  • Yuhui Wang,
  • Shenghu Yan,
  • Yue Zhang,
  • Xiaoming Ma,
  • Qiang Zhang and
  • Wei Zhang

Beilstein J. Org. Chem. 2024, 20, 912–920, doi:10.3762/bjoc.20.81

Graphical Abstract
  • schistosomiasis [22][23][24][25]. The combination of the privileged heterocycles tetrazole and tetrahydroisoquinoline in one molecule generates new molecules which could have biological activities. A standard Ugi four-component reaction (Ugi-4CR) of an aldehyde, amine, isocyanide, and a carboxylic acid produces
  • highly diverse peptidic structures A with up to four points of substitution (Scheme 1) [26][27]. By replacing the carboxylic acid with a nucleophilic azide reagent XN3 (generally TMSN3), the Ugi-azide four-component reaction (UA-4CR) of an aldehyde, amine, isocyanide, and azide gives 1,5-disubstituted 1H
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • and aldehyde protecting groups. Recently, Lebold, Sarpong, and co-workers showed that 1,2-BCPs (±)-14a–e are also accessible from 1,5-disubstituted 2-azabicyclo[2.1.1]hexanes 13 (2-aza-1,5-BCHs) through a skeletal editing strategy utilising commercially available Levin’s reagent [30][31] (Scheme 1D
  • homologation and hydrolysis led to aldehyde (±)-46 which could then be oxidised to acid (±)-47 using a Pinnick oxidation. BCH 42b also led to ester (±)-48 via a Horner–Wadsworth–Emmons reaction followed by hydrogenation of the formed alkene. 1,2-BCH 44 could be turned into amine (±)-49 by oxime formation and
  • conditions in the transformation of alcohol 153 to aldehyde 154. All of these transformations could be performed without reduction in diastereomeric ratio. Additionally, the authors showed that acid 152 can undergo nickel-catalysed decarboxylative cross coupling reactions via redox active ester 156 to afford
PDF
Album
Review
Published 19 Apr 2024

Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins

  • Ke Jiang,
  • Cheng Pan,
  • Limin Wang,
  • Hao-Yang Wang and
  • Jianwei Han

Beilstein J. Org. Chem. 2024, 20, 841–851, doi:10.3762/bjoc.20.76

Graphical Abstract
  • generally moderate to good yields of 22–83% (Table 2, entries 1–17). These substituents included halogen (Br), methyl, phenyl, aldehyde, ester, and methoxy groups, all of which were compatible with the reaction conditions. Notably, compounds 3ab, 3ah, 3aj, 3am and 3ap bearing bromine are very useful modules
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • broad generality and tolerates various sensitive functional groups, including aldehyde 45 and nitrile 46. However, electron-poor styrene, resulting in chloride 40, or terminal and 1,2-disubstituted alkenes forming chlorides 41–46 and cyclooctyl chloride (26) necessitated harsher reaction conditions. As
  • functional tolerance of this methodology is striking. Especially examples with sensitive aldehyde (175), nitrile (176), N-Boc (177), furan (178), thiophene (179), and even tertiary alcohols (180 and 181) are impressive. The primary drawback of this methodology lies in the synthesis of the ligand L3
PDF
Album
Review
Published 15 Apr 2024

Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins

  • Zhongwei Hua,
  • Nan Liu and
  • Xiaohui Yan

Beilstein J. Org. Chem. 2024, 20, 741–752, doi:10.3762/bjoc.20.68

Graphical Abstract
  • ), or zeaxanthin (7) by a carotenoid cleavage dioxygenase (CCD) to form crocetin aldehyde (8) and, after oxidation, 1, and 3) glycosylation of 1 to generate crocins (Figure 3). Since the biosynthetic pathways of 5 in plants and microorganisms have been elucidated and reviewed, we will only elaborate the
  • (CCD), aldehyde dehydrogenase (ALDH), uridine diphosphate glucosyltransferase (UGT). Structure of crocin and crocetin derivatives. A, SG, G, GB, and GT represent the common substituents of the crocin skeleton shown in Figure 1. Heterologous production of crocetin (1) and crocins. Acknowledgments We
PDF
Album
Review
Published 09 Apr 2024

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • TE-catalyzed marcolactonization [69]. The synthesis of linear peptide 34 commenced with the lactone opening of 26 to afford Weinreb amide 27. Following primary alcohol protection and amide reduction, the aldehyde 28 was coupled with iodide 29 to afford 30 via Nozaki–Hiyama–Kishi coupling, which was
  • then transformed into aldehyde 31 through several protecting group adjustments and the corresponding alcohol and Ley oxidation. After the preparation of 33 using Evans syn-aldol condensation as a critical step, 34 was produced by thioester formation, desilylation, and allylic oxidation. Incubating 34
  • terminal polyketide synthases (PKSs) in juvenimicin biosynthesis in 2017 [75], which presented a chance to accomplish the chemoenzymatic total syntheses of tylactone and the juvenimicins (Scheme 7). To generate an appropriately activated tylactone hexaketide intermediate 49, two key fragments, aldehyde 42
PDF
Album
Review
Published 04 Apr 2024

Evaluation of the enantioselectivity of new chiral ligands based on imidazolidin-4-one derivatives

  • Jan Bartáček,
  • Karel Chlumský,
  • Jan Mrkvička,
  • Lucie Paloušová,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2024, 20, 684–691, doi:10.3762/bjoc.20.62

Graphical Abstract
  • explained by the sterical demand of the aldehyde (R = t-Bu), leading to suppressing its coordination with the complex. The ee values achieved with the complex of ligand Ia were variable (29–83%), whereas better enantioselectivity was found for less reactive aldehydes (aliphatic and bearing electron-donating
  • effective transition state includes the electrophile positioned in the equatorial site (strongly coordinated) and the nucleophile in the perpendicular site (weakly coordinated) [19]. The most favourable orientation of aldehyde should be out of the ligand’s molecular parts, thus forming E-configuration at
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • made the aldehyde less reactive. The use of non-substituted aromatic aldehydes also provided the expected products (4aa and 4bb) in excellent yields (up to 99%). Heteroaromatic aldehydes gave the respective products 4cc–ee in moderate to excellent yields (65–98%). However, the use of phenyl isocyanide
  • were obtained in good to excellent yields (74–99%) when isobutyraldehyde and cyclohexanecarboxaldehyde were used. Notably, even the less reactive isocyanides phenyl isocyanide and methyl isocyanoacetate reacted well and gave high product yields. Besides, the longer chain aldehyde heptaldehyde also
  • reproducible. Unsuccessful substrates for these reactions were also detected (Scheme 4). The use of 2-amino-3-hydroxypyridine provided a complex mixture of products (1H and 13C NMR analysis). When 6-amino-2-thiouracil was used, only the starting materials were recovered. Regarding the aldehyde component, the
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024
Other Beilstein-Institut Open Science Activities