Search results

Search for "alkene" in Full Text gives 510 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • –Alder reaction between an imine and an alkene (Scheme 6). Very successfully, the multicomponent version of the Povarov reaction using aldehydes, anilines, and alkenes has been explored in a three-component cascade reaction to quinolines [28][29][30][31] (Scheme 6). Furthermore, protocols have been
  • developed in which the alkene compound has been replaced with other surrogates for electrophilic addition, such as ketones [32][33][34]. In the case of the carbonyl component, it is generally an aromatic aldehyde [30][33][34] and there are not many reports on using formaldehyde in the Povarov reaction. In a
  • the alkene moiety of the amine. The resulting stabilized carbocation 15 is then captured by formaldehyde (generated in situ from DMSO) leading to an intermediate oxocarbenium 16 that undergoes a cyclization to obtain the sulfenylated oxazinane derivative 13. In isotope labelling experiments using DMSO
PDF
Album
Review
Published 13 Mar 2025

Cryptophycin unit B analogues

  • Thomas Schachtsiek,
  • Jona Voss,
  • Maren Hamsen,
  • Beate Neumann,
  • Hans-Georg Stammler and
  • Norbert Sewald

Beilstein J. Org. Chem. 2025, 21, 526–532, doi:10.3762/bjoc.21.40

Graphical Abstract
  • containing a dimethylamino motif did not require an additional protecting group, ring closure was performed through alkene cross metathesis, which has been accomplished reliably and with good yields for other cryptophycins [11][26][27]. However, for the synthesis of a cryptophycin with a monomethylated amino
  • group in unit B a suitable protecting group, i.e., allyloxycarbonyl (Alloc), must be used. Since the presence of this allylic double bond would most likely interfere with a clean reaction outcome after alkene cross metathesis, we decided for a more classical ring-closure strategy through
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

  • Yujun Pang,
  • Jinglan Yan,
  • Nawaf Al-Maharik,
  • Qian Zhang,
  • Zeguo Fang and
  • Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241, doi:10.3762/bjoc.21.15

Graphical Abstract
  • of our ongoing interest in radical cyclization reactions [22][23][24][25][26], we report here a sustainable and efficient protocol for synthesizing difluoromethylated and aryldifluoromethylated polycyclic imidazoles via visible-light-promoted cyclization of unactivated alkene-containing imidazoles
PDF
Album
Supp Info
Letter
Published 30 Jan 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • bearing linear alkyl groups were transformed into N-acyl amidines 10a–c by copper catalysis. Moreover, good functional group tolerance was observed with a terminal alkene motif (10d). The cyclohexyl-substituted dioxazolone successfully provided the corresponding N-acyl amidine 10e. However, the
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • an alkene to generate a radical intermediate, followed by oxidation, which enables radical-polar crossover (RPC) and the subsequent nucleophilic attack of the cationic intermediate [67]. Alternatively, the initial radical intermediate can be trapped by a transition-metal catalyst, followed by a cross
  • enantioselective radical cyanation. In the proposed catalytic cycle, Co(III)–H species 92 are initially formed from the anodically oxidized Co(III) complex 91 and hydrosilane 88 (Figure 15). Subsequently, the HAT between the Co(III)–H catalyst 92 and the alkene 27 generates a carbon-centered radical species 93
  • reacts with the alkene 97 to produce an alkyl radical 104, which undergoes ligand transfer from Cu(II)(N3)2 (102) to yield the diazidation product 99 and Cu(I)(N3) (100). The Cu(I)(N3) (100) is reoxidized to Cu(III)(N3)3 (101) on the anode in the presence of N3- to complete the catalytic cycle. In 2024
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • , respectively. The latter interacts with the alkene generating an alkyl radical IV that converts to the cationic intermediate V by single-electron oxidation by the Cu(II) species. Finally, the attack of the nucleophile leads to the desired products 6. Starting from aryl carbazates, intermediate II, adds
  • directly to the alkene, then reacts with the nucleophile to afford product 7. The regioselective 1,2-difunctionalization of allyl alcohol has been developed as a three-component cascade reaction using arenes and sulfonamides as nucleophiles to achieve arylation/hydroamination processes. The reaction
  • begins with a nucleophilic attack of hydrazine on the aldehyde, activated by the copper salt, to give the corresponding hydrazone XXVIII. Subsequently, the formation of a Mannich-type intermediate XXIX was hypothesized by interaction between the hydrazone and the alkene mediated by Cu(OTf)2 coordination
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • ) cyclization of alkynylindolylmethanols 170 and 2-naphthols 171 mediated by chiral phosphoric acid C37 leading to axially chiral aryl-alkene-indoles 172 (Scheme 50) [78]. Very high enantioselectivities and E/Z ratios, along with, on average, decent yields, were reported. Slow racemization was observed at 40 or
PDF
Album
Review
Published 09 Jan 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • cycloadducts 29e and 31e in good yields (Scheme 12). Further derivatizations were also carried out: The treatment of 29e with SOCl2 led to interesting unsaturated derivative 32 in a 54% yield. The acetylation of 31e provided 33 in 76% yield. Next, an alkene metathesis of 33 with styrene led to product 34 in 72
  • stepwise mechanism could be also feasible (path b). In the latter, the addition of the alkene to the azadiene is occurring first and leads to an intermediate which then undergoes an intramolecular cyclization to yield product 62f. In both pathways, the hydrogen-bonding interaction between the substrate and
PDF
Album
Review
Published 10 Dec 2024

Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling

  • John M. Halford-McGuff,
  • Thomas M. Richardson,
  • Aidan P. McKay,
  • Frederik Peschke,
  • Glenn A. Burley and
  • Allan J. B. Watson

Beilstein J. Org. Chem. 2024, 20, 3198–3204, doi:10.3762/bjoc.20.265

Graphical Abstract
  • established as a powerful approach for molecule synthesis. Strategies within click chemistry include several widely used reactions such as the (hetero-)Diels–Alder reaction [1][2], alkene hydrothiolation [3], and an array of amide-bond-forming chemistries [4]. However, by virtue of the access to alkyne and
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2024

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • firstly through the coordination of an alkene by the HVI reagent, which activates it toward intramolecular attack by an internal nucleophile. Following this, substitution of the iodane(III) can occur from the nucleophilic halide in solution to reveal the halo-cyclised product (Figure 2). In this review
  • this review aims to fill. The synthetic uses of HVI reagents [14][15][16], their involvement in heterocycle synthesis [17][18][19], and alkene functionalisation [20][21], have each been well-reviewed elsewhere. Review Hypervalent iodine-mediated fluorocyclisation Fluorine can substantially improve the
  • fluoride and BF3·OEt2 as activator. A range of unsaturated amines 5 were cyclised to racemic β-fluorinated piperidines 6. Good yields were reported for all compounds except those with substituents present on the alkene. Homologation of the carbon chain from 5 to 6 carbons gave both 6- and 7-membered rings
PDF
Album
Review
Published 28 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • formation of tert-butoxy and tert-butylperoxy radicals from TBHP as a result of redox reactions with Cu(I)/Cu(II). The tert-butoxy radical abstracts the hydrogen atom from alkene 8 to form the C-centered radical A. The subsequent attack of the tert-butylperoxy radical on intermediate A leads to the
  • . Then the alkene interacts with the C-centered radical C leads to the formation of radical species D. Finally, recombination of D and B results in the formation of the target difunctionalization product 98. Related methods were subsequently proposed for the modification of coumarins 99 [92] in the
  • of hydrogen atom from TBHP with radical A. The interaction of hydrogen donors (R–H) with radical A or B generates C-centered radical C. Then two ways of reaction proceeding are possible: the interaction of alkene 99 with C-centered radical C or with tert-butylperoxy radical B leads to the formation
PDF
Album
Review
Published 18 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • acetylide-bonded allylic cation as the key intermediate is proposed (Scheme 6a). It is worth noting that the nucleophilic attack favors a less sterically hindered site. Therefore, disubstituted alkene moiety prefers γ-attack while trisubstituted alkene moiety is inclined to α-attack (Scheme 6b). Lin and He
PDF
Album
Review
Published 31 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • carbocation intermediate, which rearomatizes through proton loss. Concurrently, the cathodic reduction of the generated protons produces H2. In addition to (hetero)aromatic groups, alkene scaffolds also underwent this reaction (Scheme 3). In the same year, the Lei group [10] extended the electrochemical C(sp2
  • that dimerize to form iodine (I2). Subsequent anodic oxidation of in-situ formed Et3N produced an α-amino radical. The iodine then reacts with the alkene to form an iodonium intermediate, which undergoes intramolecular cyclization with losing an electron, and a second water attack to yield the desired
  • =C bond in the Co–alkene complex, forming an intermediate alkyl radical, which is further anodically oxidized to produce an intermediate alkyl cation. Another indole molecule undergoes electrophilic alkylation by this intermediate, forming an indolyl cation, which upon deprotonation yields the final
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • the linked alkene moiety, followed by hydrogen transfer from the hydrogen atom transfer (HAT) catalyst. This process was used to successfully prepare 2-alkylated clavam derivatives. Keywords: β-lactam; acridinium photocatalyst; alkenes; amides; intramolecular radical reaction; photoredox catalysis
  • ; Introduction Access to nitrogen radicals for the functionalization of alkenes is a field under active investigation [1][2][3][4], as it gives the possibility to directly introduce nitrogen into an alkyl chain (alkene carboamination) to obtain valuable nitrogen-containing molecules [5][6]. Among several N
  • functionalization of amides with alkenes under photoredox conditions. Another viable approach for amide functionalization through photoredox catalysis involves the nucleophilic addition, in the presence of base, of an amide to a radical cation obtained by oxidation of an unfunctionalized alkene moiety (Figure 1A
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Hypervalent iodine-mediated cyclization of bishomoallylamides to prolinols

  • Smaher E. Butt,
  • Konrad Kepski,
  • Jean-Marc Sotiropoulos and
  • Wesley J. Moran

Beilstein J. Org. Chem. 2024, 20, 2455–2460, doi:10.3762/bjoc.20.209

Graphical Abstract
  • the alkene and the amide increased from two to three atoms. In the latter case, cyclization at the amide nitrogen to form the pyrrolidine ring was favored over cyclization at the amide oxygen. A DFT study was undertaken to rationalize the change in mechanism of this cyclization process. In addition
  • 2019, we reported our DFT study on the cyclization of N-allylbenzamide (1a) to the 2-oxazoline 4a, i.e., where n = 1 and Ar = Ph [18]. This work indicated that the alkene is activated by the iodine(III) species and that this triggers cyclization. Intrigued by the change in mechanism from O- to N
  • -cyclization onto the alkene when n = 3, we modelled this reaction using DFT calculations (Scheme 2). Similarly, we concluded that the present reaction commences with activation of the olefin in 3a by the hypervalent iodine species 8, which is generated under the reaction conditions. The activation occurs via
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2024

Phenylseleno trifluoromethoxylation of alkenes

  • Clément Delobel,
  • Armen Panossian,
  • Gilles Hanquet,
  • Frédéric R. Leroux,
  • Fabien Toulgoat and
  • Thierry Billard

Beilstein J. Org. Chem. 2024, 20, 2434–2441, doi:10.3762/bjoc.20.207

Graphical Abstract
  • (Scheme 1). It should be noted that the reaction with styrene gave low yields and the resulting products appeared very unstable. Finally, the tri-substituted alkene 1-methylcyclohexene did not give the expected products. Finally, some more elaborated molecules such as the macrolactone 2j, the clofibrate
  • addition of DNTFB and quickly turns yellow). Then, the tube is opened and PhSeBr (118 mg, 0.5 mmol, 1 equiv) is added in one portion. The resulting reaction mixture is stirred in the same ice bath for 15 minutes. Then, the tube is opened and the alkene (1, 0.5 mmol, 1 equiv) is added. The reaction is
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • transfer reagents; (iv) direct metal-free imine carbanion addition to electrophilic alkene. Class (i) underwent an evolution from catalysis by covalent interaction to chiral hydrogen-bonded catalysis, which allowed the expansion of the allyl component scope from simple allyl to substituted allyl groups
PDF
Album
Review
Published 16 Sep 2024

gem-Difluorination of carbon–carbon triple bonds using Brønsted acid/Bu4NBF4 or electrogenerated acid

  • Mizuki Yamaguchi,
  • Hiroki Shimao,
  • Kengo Hamasaki,
  • Keiji Nishiwaki,
  • Shigenori Kashimura and
  • Kouichi Matsumoto

Beilstein J. Org. Chem. 2024, 20, 2261–2269, doi:10.3762/bjoc.20.194

Graphical Abstract
  • can react with BF4− to give fluorinated alkene B [57][58][59][60]. In the next step, B can undergo the second addition of H+, followed by the incorporation of F− into the carbocation intermediate C, forming the difluorinated compound 2a. The carbocation adjacent to the F atom might be stabilized by
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation

  • Andrey R. Galeev,
  • Maksim V. Dmitriev,
  • Alexander S. Novikov and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2024, 20, 2208–2216, doi:10.3762/bjoc.20.188

Graphical Abstract
  • condensation by introducing additional functional groups into the amine moiety (Figure 3). Substituted arylamines bearing alcohol (3ae), phenol (3ad), alkene (3bi), dimethyl acetal (3bj) functionality can be accessed in good yields. Reaction of 1,3-diketone 1a with a non-amidine type heterocyclic amine, 3
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • -position of the nitrile is also detrimental to the reaction, resulting in less than 30% yield of the desired product 3d. Nevertheless, the reaction is compatible with halogens elsewhere in longer nitrile alkyl chains (3e,g). Finally, it was possible to obtain the terminal alkene 3f with a yield of 58
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • toluene [173]. N-Vinylimidazole, an alkene with a leaving group, was used to synthesize the 3-substituted pyrazoles 169 because, unlike acetylene, it is not gaseous and, therefore, easier to handle. Instead of vinylimidazole, vinyl azides 170 can also be used as alkyne surrogates. After the 1,3-dipolar
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • electron donor to furnish the olefin product 148. In the cathodic chamber, reduction of the acidic proton of TFA counterbalance the overall transformation. A wide range of carbonyl compounds including aromatic and aliphatic aldehydes and ketones as well as various alkene partners were compatible. Of note
PDF
Album
Review
Published 14 Aug 2024

Radical reactivity of antiaromatic Ni(II) norcorroles with azo radical initiators

  • Siham Asyiqin Shafie,
  • Ryo Nozawa,
  • Hideaki Takano and
  • Hiroshi Shinokubo

Beilstein J. Org. Chem. 2024, 20, 1967–1972, doi:10.3762/bjoc.20.172

Graphical Abstract
  • the electrophile [16][17][18]. In addition, C–C double bonds of the norcorrole skeleton outside the π-delocalization pathway exhibit a reactivity similar to an alkene to afford hydrogenated norcorroles by hydrogenation [19] or reduction with hydrazine [20] and [3 + 2]-cycloadducts with 1,3-dipoles [21
PDF
Album
Supp Info
Letter
Published 12 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • aza-Wacker cyclizations under acidic conditions, which are expected to proceed via radical cations generated by single-electron oxidation of alkenes. Keywords: alkene; aza-Wacker cyclization; electrochemistry; radical cation; sulfonamide; Introduction Activating bench-stable substrates is the first
  • cyclization using the alkene 1 as a model (Table 1). Based on the conditions reported by Yoon and Moeller, the initial screening was carried out using tetrabutylammonium triflate (Bu4NOTf)/1,2-dichloroethane (1,2-DCE) solution. Carbon felt (CF) was used as an anode instead of reticulated vitreous carbon (RVC
  • , differently substituted alkenes 11, 14 were prepared and subjected to the reaction under electrochemical and non-electrochemical conditions (Scheme 4). In the case of the trisubstituted alkene 11, the six-membered anti-Markovnikov product 12 was selectively obtained under electrochemical conditions, while the
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • protecting group yielded the corresponding hydroxyalkynyl derivative 4. Subsequent Lindlar reduction resulted in the (Z)-alkene and a chemoselective tosylation of the primary alcohol led to the formation of tosylate 5. This intermediate underwent a stereospecific 4-exo cyclization upon exposure to iodine
PDF
Album
Review
Published 24 Jul 2024
Other Beilstein-Institut Open Science Activities