Search results

Search for "catalysis" in Full Text gives 1195 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • , which formed the corresponding products in high to excellent enantioselectivities. In this paper, the asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon stereogenic centers by the Mannich reaction through chiral halonium salt catalysis is presented, which provided the
  • corresponding products in excellent yields with up to 86% ee. To the best of our knowledge, the present paper is the first to report the asymmetric construction of β-amino cyanoesters with contiguous tetrasubstituted carbon stereogenic centers by the catalytic Mannich reaction. Keywords: asymmetric catalysis
  • organic chemistry [2][3][4][5], organocatalysis [6][7], metal catalysis [8][9], biochemistry [10][11], materials science [12][13], and supramolecular chemistry [14][15], although its successful application to asymmetric catalysis has been limited (Figure 1) [16][17][18][19][20]. In 2018, Arai and co
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Organocatalytic kinetic resolution of 1,5-dicarbonyl compounds through a retro-Michael reaction

  • James Guevara-Pulido,
  • Fernando González-Pérez,
  • José M. Andrés and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2025, 21, 473–482, doi:10.3762/bjoc.21.34

Graphical Abstract
  • organometallic catalysis [15], enzymatic catalysis [16], aminocatalysis [17][18][19], and hydrogen-bonding catalysis [20][21][22]. The Michael addition reaction is a versatile synthetic methodology that allows the formation of new carbon–carbon and carbon–heteroatom bonds through the coupling of electron-poor
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Photomechanochemistry: harnessing mechanical forces to enhance photochemical reactions

  • Francesco Mele,
  • Ana M. Constantin,
  • Andrea Porcheddu,
  • Raimondo Maggi,
  • Giovanni Maestri,
  • Nicola Della Ca’ and
  • Luca Capaldo

Beilstein J. Org. Chem. 2025, 21, 458–472, doi:10.3762/bjoc.21.33

Graphical Abstract
  • Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS554 bivio per Sestu, 09042-Monserrato (CA), Italy CIRCC (Interuniversity Consortium Chemical Reactivity and Catalysis), via Celso Ulpiani 27, 70126 Bari, Italy Department of Chemistry, Life Sciences and Environmental
  • surface area exposed to light but also to allow the motions within the crystal. In another instance, MacGillivray and colleagues reported the synthesis of rctt-tetrakis(4-pyridyl)cyclobutane (2.3) via [2 + 2] photodimerization of trans-1,2-bis(4-pyridyl)ethylene (2.1) via supramolecular catalysis by 4,6
  • corresponds to a 4-fold improvement on reaction rates compared to manual grinding [64]. The authors proposed that continuous mechanical stress results in an increase of nucleation sites and allows catalysis to be accelerated with respect to manual grinding. Moreover, continued mechanical stress imparted by
PDF
Album
Perspective
Published 03 Mar 2025

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • been inspired to understand and mimic these accelerations and selectivities for applications in catalysis for sustainable synthesis. Over the past 60+ years, mimicry strategies have evolved with changing interests, understanding, and synthetic advances but, ubiquitously, research has focused on use of
  • demonstrating enzyme-like rate accelerations remain rare. This perspective will briefly highlight some of the key advances in traditional cavity catalysis, by cavity type, in order to contextualize the recent development of robust organic cage catalysts, which can exploit stability, functionality, and reduced
  • symmetry to enable promising catalytic modes. Keywords: cavity confinement catalysis; enzyme mimicry; robust organic cages; self-assembly; supramolecular catalysis; Introduction I frequently introduce my research on organic cage enzyme mimics with the following observation. For hundreds of years
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • diverse catalyst types and applications. The first section is dedicated to metal-based photocatalysts. Complexes involving metals such as osmium and ruthenium, have dominated red-light photoredox catalysis because of their ability to absorb low-energy photons and sustain redox cycles via stable excited
  • catalysis in recent years not only with heavy metals such as ruthenium and iridium [1][2][3][4][5], but also with lighter elements [6][7][8]. This field of light-mediated organic transformations relies on the use of a photocatalyst to promote radical reactions through electron transfer between this former
  • have been proven to be efficient in photoredox catalysis [9][10][11][12]. Actually, MLCT enables a charge separation for which the ligand-based electron can trigger a chemical reduction while the metal-centered hole, a chemical oxidation. This type of excitation is particularly enhanced in heavy metals
PDF
Album
Review
Published 07 Feb 2025

Synthesis of disulfides and 3-sulfenylchromones from sodium sulfinates catalyzed by TBAI

  • Zhenlei Zhang,
  • Ying Wang,
  • Xingxing Pan,
  • Manqi Zhang,
  • Wei Zhao,
  • Meng Li and
  • Hao Zhang

Beilstein J. Org. Chem. 2025, 21, 253–261, doi:10.3762/bjoc.21.17

Graphical Abstract
  • this study, we report the synthesis of corresponding disulfides under the catalysis of TBAI (tetrabutylammonium iodide) using sodium alkyl or aromatic sulfinates as sulfur sources. Sodium sulfinates are more stable than sulfonyl hydrazides, sulfonyl chlorides, and thiols, and there is no need to add
  • converted with enaminones to 3-sulfenylchromones under iodine catalysis, an attempt was made to see whether this reaction system would be suitable for this reaction. Fortunately, the target products could indeed be obtained in high yields under these reaction conditions. Based on the optimized conditions
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • bearing linear alkyl groups were transformed into N-acyl amidines 10a–c by copper catalysis. Moreover, good functional group tolerance was observed with a terminal alkene motif (10d). The cyclohexyl-substituted dioxazolone successfully provided the corresponding N-acyl amidine 10e. However, the
  • area of medicinal chemistry [93][94][95][96][97]. In 2018, Buchwald and co-workers unveiled the enantioselective synthesis of benzylic amines through the asymmetric Markovnikov hydroamidation of alkenes utilizing diphenylsilane in copper catalysis under mild reaction conditions [98]. Dioxazolones, as
  • Synthesis of primary amides via the generation of copper–imidate radical intermediates In a subsequent study, the research group of Son developed a method for the reduction of dioxazolones to synthesize primary amides under mild reducing conditions in copper catalysis (Scheme 10) [103]. The reaction was
PDF
Album
Review
Published 22 Jan 2025

Hydrogen-bonded macrocycle-mediated dimerization for orthogonal supramolecular polymerization

  • Wentao Yu,
  • Zhiyao Yang,
  • Chengkan Yu,
  • Xiaowei Li and
  • Lihua Yuan

Beilstein J. Org. Chem. 2025, 21, 179–188, doi:10.3762/bjoc.21.10

Graphical Abstract
  • applications, which includes catalysis [26], gelation [27], sensing [28], color tuning, etc. [29]. However, only several kinds of macrocycles are capable of supramolecular dimerization through host–guest interactions [30]. Shape-persistent macrocycles have captured the interest of chemists for decades [31][32
  • tunable to suit desired functions. These macrocycles have found widespread applications owing to their unique host–guest behaviors in the fields of recognition [43], ion channels [44], catalysis [45], rotaxanes [46], as well as molecular machines [47]. We envisioned that the use of a H-bonded aromatic
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C–C and C–heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of
  • electrochemistry and copper catalysis for various organic transformations. Keywords: copper; electrochemistry; radical chemistry; single-electron transfer; sustainable catalysis; Introduction Transition-metal-catalyzed cross-coupling has emerged as an effective method for forming carbon–carbon (C–C) and carbon
  • remains a significant challenge owing to the high energy barrier required for oxidative addition and facile β-hydride elimination [12]. The development of radical approaches facilitated by transition-metal catalysis has provided a promising solution to overcome the limitations of conventional coupling
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • insights were outlined as well as cycloaddition and aza-Diels–Alder reactions were included. These strategies have gained attention due to their highly atom- and step-economy, one-step multi-bond forming, mild reaction conditions, low cost and easy handling. Keywords: cascade process; copper catalysis
  • . Electron-poor and electron-rich aromatic aldehydes gave good results, whereas aliphatic aldehydes gave moderate yields (Scheme 11) [24]. The asymmetric conjugate addition of dialkylzinc and benzaldehyde to unsaturated carbonyls under copper catalysis in the presence of optically pure phosphanes was
  • aldehyde, urea and a 1,3-dicarbonyl compound [26][27]. In these reactions, the use of catalytic Cu(OTf)2 proved to be an excellent triflate surrogate, also revealing a remarkable reuse activity. The first example of a Biginelli reaction carried out with Cu(OTf)2 catalysis was reported by Sudalai and co
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis. Atroposelective
  • compounds comprising a stereogenic plane or axis is much less developed. Axially chiral compounds are well known as chiral ligands in asymmetric catalysis, with notable examples of binaphthyl-based derivatives such as BINAP, SEGPHOS, or binaphthyl-based phosphoric acid derivatives, which are among the
  • to NHC-catalyzed reactions. The major part is devoted to chiral Brønsted acid catalysis as it seems so far the most widely used activation principle for the generation of axially chiral compounds. Hydrogen-bond-donating catalysts and various other activation modes complete the discussion of recent
PDF
Album
Review
Published 09 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • with feedback DOE facilitated the rapid identification of appropriate solvents. Notably, the use of DMSO, DMF, and pyridine led to an enhanced yield of the monoalkylated product. An experimental setup was developed for single-droplet studies of visible-light photoredox catalysis using an oscillatory
PDF
Album
Review
Published 06 Jan 2025

Synthesis of acenaphthylene-fused heteroarenes and polyoxygenated benzo[j]fluoranthenes via a Pd-catalyzed Suzuki–Miyaura/C–H arylation cascade

  • Merve Yence,
  • Dilgam Ahmadli,
  • Damla Surmeli,
  • Umut Mert Karacaoğlu,
  • Sujit Pal and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2024, 20, 3290–3298, doi:10.3762/bjoc.20.273

Graphical Abstract
  • was selectively iodinated from the para-position with respect to the -OMe group with the use of NIS to afford iodonaphthalene 25 in 88% yield. A subsequent Miyaura borylation of 25 using B2pin2 under Pd catalysis gave boronic ester 26 in 71% yield, which set the stage for the key fluoranthene
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2024

Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation

  • Perry van der Heide,
  • Michele Retini,
  • Fabiola Fanini,
  • Giovanni Piersanti,
  • Francesco Secci,
  • Daniele Mazzarella,
  • Timothy Noël and
  • Alberto Luridiana

Beilstein J. Org. Chem. 2024, 20, 3274–3280, doi:10.3762/bjoc.20.271

Graphical Abstract
  • photochemistry has introduced new ways of generating radicals like photoredox catalysis and via electron donor–acceptor (EDA) complexes [10][11][12][13]. These advances, coupled with modern electrochemical methods, chemical reactor engineering and light emitting diodes (LED), have eliminated the need for thermal
  • by Chatgilialoglu et al. [22] under non-photoredox conditions, MacMillan et al. [23] sparked renewed interest in silanes as XAT reagents by generating a tris(trimethylsilyl)silyl radical through photoredox catalysis for arylation reactions [22][23]. In 2018, Balsells et al. [24] reported a similar
PDF
Album
Supp Info
Letter
Published 17 Dec 2024

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • out IEDADA reactions has been a glowing field in recent years [11][12]. In particular, organocatalysis can provide different activation modes to promote enantioselective IEDADA reactions [13][14], based on three strategies (Figure 3): i) LUMO-lowering activation (Brønsted acid catalysis), ii) HOMO
  • -raising activation (amine-based catalysis and N-heterocyclic carbenes), and iii) LUMO-lowering and HOMO-raising activation (bifunctional thioureas and squaramides). Due to the ubiquitous nature of non-covalent interactions in organic systems, they can play a decisive role in asymmetric transformations [15
  • Brønsted acid catalysis has been widely studied in asymmetric synthesis [38][39]. While the asymmetric transformations of 2-azadienes have been more intensively investigated, enantioselective derivatizations of 1-azadienes are scarce. In this section, the cycloaddition reactions involving α,β-unsaturated
PDF
Album
Review
Published 10 Dec 2024

Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies

  • Lucía Campos-Prieto,
  • Aitor García-Rey,
  • Eddy Sotelo and
  • Ana Mallo-Abreu

Beilstein J. Org. Chem. 2024, 20, 3151–3173, doi:10.3762/bjoc.20.261

Graphical Abstract
  • other approaches such as visible light, microwaves, heterogeneous catalysis, and ultrasound [12][13][14][15]. Due to its versatility, one of the most prevalent of these MCRs is the Ugi reaction [16]. This reaction generally combines an isocyanide with an acid, an amine, and an aldehyde or ketone to
PDF
Album
Review
Published 03 Dec 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • Mandeep K. Chahal School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK 10.3762/bjoc.20.257 Abstract This review provides an overview of recent progress made in the field of catalysis using metal-free tetrapyrrolic macrocycles, focusing on calix[4]pyrroles
  • applied in various fields, including organometallic catalysis, dye-sensitized solar cells, sensing, artificial olfactory systems, photodynamic therapy (PDT), anticancer drugs, biochemical probes, and electrochemical devices. Relevant examples of these two pyrrolic macrocycles as metal-free organocatalysts
  • with porphyrins, the direct linkage between their pyrrole units leads to a more contracted cavity compared to that of porphyrins. Similar to calix[4]pyrroles, synthetic metallo- and free-base (metal-free) porphyrins find various applications in the fields of medicine, energy, catalysis, molecular
PDF
Album
Review
Published 27 Nov 2024

Synthesis of the 1,5-disubstituted tetrazole-methanesulfonylindole hybrid system via high-order multicomponent reaction

  • Cesia M. Aguilar-Morales,
  • América A. Frías-López,
  • Nadia V. Emilio-Velázquez,
  • Alejandro Islas-Jácome,
  • Angelica Judith Granados-López,
  • Jorge Gustavo Araujo-Huitrado,
  • Yamilé López-Hernández,
  • Hiram Hernández-López,
  • Luis Chacón-García,
  • Jesús Adrián López and
  • Carlos J. Cortés-García

Beilstein J. Org. Chem. 2024, 20, 3077–3084, doi:10.3762/bjoc.20.256

Graphical Abstract
  • trifluoroethanol to Et3N for the subsequent catalysis). Thus, this protocol enabled a straightforward and rapid synthesis of highly 2-substituted indoles under mild reaction conditions, highlighting the versatility of propargylamine as a bifunctional reagent in post-Ugi-azide transformations. Our group pioneered
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2024

Enantioselective regiospecific addition of propargyltrichlorosilane to aldehydes catalyzed by biisoquinoline N,N’-dioxide

  • Noble Brako,
  • Sreerag Moorkkannur Narayanan,
  • Amber Burns,
  • Layla Auter,
  • Valentino Cesiliano,
  • Rajeev Prabhakar and
  • Norito Takenaka

Beilstein J. Org. Chem. 2024, 20, 3069–3076, doi:10.3762/bjoc.20.255

Graphical Abstract
  • % yield with 61:39–92:8 enantiomeric ratios. Furthermore, possible mechanisms of propargyl–allenyl isomerization of propargyltrichlorosilane were computationally investigated. Keywords: α-allenic alcohol; computational chemistry; Lewis base catalysis; organocatalysis; propargyltrichlorosilane
  • benzaldehydes, which may be attributable to that they have smaller steric demands in the vicinity of the carbonyl carbon atom than benzaldehyde. Importantly, we did not observe the corresponding homopropargylic alcohols [51] in all cases. Since this work is the first asymmetric catalysis study of isomerically
PDF
Album
Supp Info
Letter
Published 25 Nov 2024

Extension of the π-system of monoaryl-substituted norbornadienes with acetylene bridges: influence on the photochemical conversion and storage of light energy

  • Robin Schulte,
  • Dustin Schade,
  • Thomas Paululat,
  • Till J. B. Zähringer,
  • Christoph Kerzig and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2024, 20, 3061–3068, doi:10.3762/bjoc.20.254

Graphical Abstract
  • particular, this system shows a high energy storage capacity of up to 1 MJ/kg, and the energy can be conveniently released in form of heat by controlled photolysis, thermolysis, or catalysis [8][14]. However, the parent norbornadiene (1a) only absorbs ultraviolet light, which is of limited availability in
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2024

Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond

  • Thomas Ma and
  • John Chu

Beilstein J. Org. Chem. 2024, 20, 3050–3060, doi:10.3762/bjoc.20.253

Graphical Abstract
  • offloading step always entails the same chemical reaction, wherein nucleophilic attack is promoted by the catalytic triad of a TE via general base catalysis. This is likely why traditional mechanistic studies that focused on the enzyme active site failed to work out how TEs control NRP topology. A priori
PDF
Album
Perspective
Published 20 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • , either by themselves or with the aid of metal complex catalysis, and to provide an insight into the reactivity of these species. The present work is divided into sections, according to the type of the substrate: C(sp3)–H substrates; aromatic systems; compounds with unsaturated C–C or C–Het bonds. The
  • photoredox catalysis [26][27][28]. These methods allow selectivity to be controlled despite the presence of the complex cocktail of radical species generated by hydroperoxides under redox or homolysis conditions. The main challenge in selective radical peroxidation is the wide range of possible pathways
  • compounds (β-diketones, β-ketoesters, and malonic esters) with TBHP via homogeneous and heterogeneous Cu(II)-catalysis were developed (Scheme 10) [45][46][47]. It was assumed that the reaction pathway includes the formation of diketonate complex A from β-dicarbonyl compound 19 and copper(II) salt, which
PDF
Album
Review
Published 18 Nov 2024

Synthesis of fluorinated acid-functionalized, electron-rich nickel porphyrins

  • Mike Brockmann,
  • Jonas Lobbel,
  • Lara Unterriker and
  • Rainer Herges

Beilstein J. Org. Chem. 2024, 20, 2954–2958, doi:10.3762/bjoc.20.248

Graphical Abstract
  • . After metalation with Ni(acac)2 and hydrolysis electron-rich porphyrins were obtained, that are equipped with covalently attached long chain acid substituents. The target compounds have potential applications in catalysis, sensing, and materials science. The fluorinated aliphatic carboxylic acids (TfO
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2024

Multicomponent synthesis of α-branched amines using organozinc reagents generated from alkyl bromides

  • Baptiste Leroux,
  • Alexis Beaufils,
  • Federico Banchini,
  • Olivier Jackowski,
  • Alejandro Perez-Luna,
  • Fabrice Chemla,
  • Marc Presset and
  • Erwan Le Gall

Beilstein J. Org. Chem. 2024, 20, 2834–2839, doi:10.3762/bjoc.20.239

Graphical Abstract
  • remains tenuous. Indeed, until recently, mixed alkylzinc species were only employed by Carretero and co-workers in related nucleophilic additions to activated imines under Cu catalysis [22]. In 2022, our group demonstrated that alkyl iodides offer a reliable source of heteroleptic organozinc compounds
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2024

C–C Coupling in sterically demanding porphyrin environments

  • Liam Cribbin,
  • Brendan Twamley,
  • Nicolae Buga,
  • John E. O’ Brien,
  • Raphael Bühler,
  • Roland A. Fischer and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2024, 20, 2784–2798, doi:10.3762/bjoc.20.234

Graphical Abstract
  • porphyrin architectures, which could be used in supramolecular assemblies, catalysis, or sensing. In this work a library of arm-extended dodecasubstituted porphyrins was synthesized through the optimization of the classic Suzuki–Miyaura coupling of peripheral haloaryl substituents with a range of boronic
  • substrates in their void. Keywords: C–C coupling; conformational analysis; nonplanar porphyrin; Pd-catalysis; porphyrin; Introduction Porphyrins are tetrapyrrolic macrocycles that perform essential processes in nature, such as oxygen transport in hemoglobin and photosynthesis [1]. Porphyrins are often
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024
Other Beilstein-Institut Open Science Activities