Search results

Search for "iodine" in Full Text gives 480 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Supramolecular assembly of hypervalent iodine macrocycles and alkali metals

  • Krishna Pandey,
  • Lucas X. Orton,
  • Grayson Venus,
  • Waseem A. Hussain,
  • Toby Woods,
  • Lichang Wang and
  • Kyle N. Plunkett

Beilstein J. Org. Chem. 2025, 21, 1095–1103, doi:10.3762/bjoc.21.87

Graphical Abstract
  • at Urbana-Champaign, Urbana, IL, 61801, United States 10.3762/bjoc.21.87 Abstract This study explores the solution- and solid-state assembly of phenylalanine-based hypervalent iodine macrocycles (HIMs) with lithium and sodium cations. The metal cation binding of HIMs was evaluated by addition of
  • are presented. Keywords: hypervalent iodine; macrocycle; metal coordination; supramolecular; Introduction Supramolecular chemistry is emerging as a pivotal area of research in both medicinal and materials chemistry that opens the avenue for new functionalized materials for their use in medical
  • chemistries of hypervalent iodine systems that involve secondary bonding to form higher order molecular assemblies are yet to be fully explored. In general, the atom’s capacity to extend its valence shell beyond the usual limitations of a Lewis octet is known as hypervalency [9]. The modern periodic table
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • active acid fluorides 48 by utilizing hypervalent iodine(III) of PhI(OPiv)2 and py·HF as the fluoride source to afford the corresponding amides 49 and 50 in excellent yields (Scheme 16) [48]. Herein, the hypervalent iodine(III) reagent reacted with the phenol group to give intermediates 51 and 52
  • )-cinnamic acid esters 445–448 in excellent yields via E-to-Z photoisomerization mediated by the photocatalyst (Scheme 90) [152]. Nguyen and co-workers (2019) employed iodine to catalyze the intermolecular olefin-carbonyl metathesis reaction of benzaldehyde (449) and acrylate 450 to give the corresponding
PDF
Album
Review
Published 28 May 2025

On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals

  • Daniel Straub,
  • Markus Gross,
  • Mona E. Arnold,
  • Julia Zolg and
  • Alexander J. C. Kuehne

Beilstein J. Org. Chem. 2025, 21, 964–998, doi:10.3762/bjoc.21.80

Graphical Abstract
  • the time that they remain in their enantiopure state. The glum as a measure for the strength of CPL is of order 8 × 10−4 for PTM and 5 × 10−4 for TTM. Mixed halide triarylmethyl radicals Substitution of all para-positions in PTM with iodine atoms yields the 3I-PTM radical with a red-shifted emission
  • by the heavy atom effect of iodine, that also allows intersystem crossing (ISC) between triplet states in the matrix and the emissive doublet states of 3I-PTM. Interestingly, functionalization of all three para-positions in TTM with chalcogens in the form of aryloxy- and aryl thioethers leads to
  • iodine should break the symmetry; however, no effect on the absorption spectra and especially on the lower energy |D1⟩ transition has been reported [45]. Interestingly, substitution of one of the para-chlorines in TTM by iodine (I-TTM) has been reported to enable Pd-catalyzed cross-coupling, allowing
PDF
Album
Supp Info
Review
Published 21 May 2025

Chitosan-supported CuI-catalyzed cascade reaction of 2-halobenzoic acids and amidines for the synthesis of quinazolinones

  • Xuhong Zhao,
  • Weishuang Li,
  • Mengli Yang,
  • Bojie Li,
  • Yaoyao Zhang,
  • Lizhen Huang and
  • Lei Zhu

Beilstein J. Org. Chem. 2025, 21, 839–844, doi:10.3762/bjoc.21.67

Graphical Abstract
  • 10.3762/bjoc.21.67 Abstract A chitosan-supported CuI (CS@CuI) catalyst was developed for the synthesis of quinazolinones from 2-halobenzoic acids (including iodine and bromine) and amidines. The reaction proceeds under mild reaction conditions, demonstrating a broad substrate scope (30 examples) and good
  • methods, the cascade reaction between ortho-halogen (e.g., chlorine, bromine or iodine) substituted benzoic acids and amidines has become a prominent route to synthesize the corresponding quinazolinones [10][11][12][13][14][15][16][17][18]. In 2009, Fu and co-workers found that copper(I) could effectively
  • analysis of the filtered aqueous solution after the reaction confirmed no detectable leaching of CuI. Conclusion In summary, we have developed a CS@CuI-catalyzed cascade reaction of 2-halobenzoic acids (including iodine and bromine derivatives) and amidines for the synthesis of quinazolinones. This
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2025

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • lower yield than the –Me group. This decrease in yield is likely due to the lower oxidation voltage of the –OMe group, which may lead to the formation of unwanted byproducts. The reaction began with an anodic oxidation of iodide to iodine, followed by a reaction with dialkyl phosphonate to give I–P(O
  • -withdrawing groups such as –Cl, –Br, and –CO2Me. It was observed that carbazole derivatives with an extended conjugated system showed enhanced reactivity. Like the above P–N coupling mechanism, the reaction proceeded by an anodic oxidation of iodide to iodine followed by a reaction with dialkylphosphine oxide
  • alkyl chain, both P(OiPr)3 and P(On-Bu)3 proved effective in this reaction. In this reaction, the P–N coupling process proceeded via forming an N-indole iodide intermediate via anodic oxidation of iodide to iodine, followed by a reaction with indole (Scheme 23). Cyclic voltammetry demonstrated that in
PDF
Album
Review
Published 16 Apr 2025

Synthesis of HBC fluorophores with an electrophilic handle for covalent attachment to Pepper RNA

  • Raphael Bereiter and
  • Ronald Micura

Beilstein J. Org. Chem. 2025, 21, 727–735, doi:10.3762/bjoc.21.56

Graphical Abstract
  • and iodine, respectively, were applied to compound 5 to give the chloropropyl and iodopropyl HBC dyes 12 and 13 (Scheme 4). In addition, the HBC alcohol 5 was reacted under basic conditions with methanesulfonyl chloride to give the N-(3-mesyloxypropyl) HBC derivative 14, or with tosyl chloride to give
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2025

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • was carried out via copper catalysis or iodine–acid catalysis. Interestingly, when aliphatic amines are employed (R3 = n-Pr, n-Bu, product 8) only the N atoms are incorporated in the structure of the final product, probably because the high temperature favors the elimination of the alkyl group. The
  • DMSO (Scheme 12) [45]. In this case, the reaction works well under metal-free conditions using iodine as the catalyst. Remarkably, the activation of DMSO was accomplished using Selectfluor, and in this case, DMSO is the source of a C-1 unit. It is important to note that the reaction could be performed
PDF
Album
Review
Published 13 Mar 2025

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • -workers developed chiral amine 1 with an electron-deficient iodine atom, which catalyzed the Mannich reaction in excellent yields and enantioselectivities [17]. In 2020, Huber and co-workers reported the bis(iodoimidazolium) 2-catalyzed Mukaiyama–aldol reaction of carbonyl compounds with enol silyl ethers
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Synthesis of electrophile-tethered preQ1 analogs for covalent attachment to preQ1 RNA

  • Laurin Flemmich and
  • Ronald Micura

Beilstein J. Org. Chem. 2025, 21, 483–489, doi:10.3762/bjoc.21.35

Graphical Abstract
  • subjected to Appel conditions in DMF, using elemental iodine as the halogen source. Notably, we were not able to efficiently generate the corresponding bromides with the same strategy. The preQ1 derivative 3a was synthesized in a 2-step reaction sequence analogous to the DPQ1 derivative 4b, while four steps
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2025

Electrochemical synthesis of cyclic biaryl λ3-bromanes from 2,2’-dibromobiphenyls

  • Andrejs Savkins and
  • Igors Sokolovs

Beilstein J. Org. Chem. 2025, 21, 451–457, doi:10.3762/bjoc.21.32

Graphical Abstract
  • approach would conceptually differ from previously reported anodic syntheses of cyclic diaryl iodonium compounds, where an electrochemically generated acyclic iodine(III) intermediate undergoes an intramolecular SEAr-type reaction to form the cyclic product [19][20]. Herein, we report on the development of
PDF
Album
Supp Info
Letter
Published 27 Feb 2025

Synthesis of disulfides and 3-sulfenylchromones from sodium sulfinates catalyzed by TBAI

  • Zhenlei Zhang,
  • Ying Wang,
  • Xingxing Pan,
  • Manqi Zhang,
  • Wei Zhao,
  • Meng Li and
  • Hao Zhang

Beilstein J. Org. Chem. 2025, 21, 253–261, doi:10.3762/bjoc.21.17

Graphical Abstract
  • converted with enaminones to 3-sulfenylchromones under iodine catalysis, an attempt was made to see whether this reaction system would be suitable for this reaction. Fortunately, the target products could indeed be obtained in high yields under these reaction conditions. Based on the optimized conditions
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2025

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

  • Yujun Pang,
  • Jinglan Yan,
  • Nawaf Al-Maharik,
  • Qian Zhang,
  • Zeguo Fang and
  • Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241, doi:10.3762/bjoc.21.15

Graphical Abstract
  • target products in good to excellent yields. Mechanistic studies revealed that the reaction proceeds via a radical pathway. Keywords: cyclization; difluoromethylation; hypervalent iodine; polycyclic imidazole; visible light; Introduction Organofluorine compounds continue to play important roles in
  • reaction (Table 1). Employing PIDA as the promoter, THF as the solvent, and 72 W white LED as the light source, the desired product 3a formed in 85% isolated yield at room temperature (Table 1, entry 1). We found that the hypervalent iodine reagent was of significant importance for the present
PDF
Album
Supp Info
Letter
Published 30 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • employing electricity as an oxidant (Figure 11) [60]. Mechanistic studies have indicated that n-Bu4NI acts as a redox mediator at the anode, and the electron transfer between the copper complex and the iodine radical is the rate-determining step. The author proposed a catalytic cycle, as illustrated in
  • Figure 11. Initially, the Cu(II) catalyst 50 coordinates with substrate 47 and amine electrophile 48 to generate Cu(II) intermediate 51, which is then oxidized by the iodine radical to form Cu(III) complex 52. Cu(III) complex 52 undergoes electron transfer to produce radical cation intermediate 53
PDF
Album
Review
Published 16 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2025

Synthesis of acenaphthylene-fused heteroarenes and polyoxygenated benzo[j]fluoranthenes via a Pd-catalyzed Suzuki–Miyaura/C–H arylation cascade

  • Merve Yence,
  • Dilgam Ahmadli,
  • Damla Surmeli,
  • Umut Mert Karacaoğlu,
  • Sujit Pal and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2024, 20, 3290–3298, doi:10.3762/bjoc.20.273

Graphical Abstract
  • two steps from 1,8-DHN (19) [57]. Methoxymethyl (MOM) protection of free -OH group of 29 using NaH and MOMCl afforded MOM-protected naphthol 30 in excellent yield (96%) [58][59]. It is worth highlighting the structural differences of naphthalenes 25 and 30, where the halogen (iodine) is on the same
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2024

Reactivity of hypervalent iodine(III) reagents bearing a benzylamine with sulfenate salts

  • Beatriz Dedeiras,
  • Catarina S. Caldeira,
  • José C. Cunha,
  • Clara S. B. Gomes and
  • M. Manuel B. Marques

Beilstein J. Org. Chem. 2024, 20, 3281–3289, doi:10.3762/bjoc.20.272

Graphical Abstract
  • Beatriz Dedeiras Catarina S. Caldeira Jose C. Cunha Clara S. B. Gomes M. Manuel B. Marques LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA FCT , 2829-516 Caparica, Portugal 10.3762/bjoc.20.272 Abstract The reactivity of our recently disclosed hypervalent iodine
  • . A plausible mechanism is proposed, suggesting a possible radical pathway. Keywords: electrophilic amination; hypervalent iodine reagents; sulfinamide; sulfonamide; Introduction Iodine(III) compounds, known as λ3-iodanes, have been extensively applied in organic synthesis. Although initially used
  • as strong oxidizing agents [1], during the last decades HIRs have been investigated as group-transfer reagents, useful in several bond-forming reactions, such as in C–C, C–N, and C–O [2][3][4][5]. The benziodoxol(on)e family, cyclic iodine(III) reagents, stands out for their thermal stability and
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2024

Direct trifluoroethylation of carbonyl sulfoxonium ylides using hypervalent iodine compounds

  • Radell Echemendía,
  • Carlee A. Montgomery,
  • Fabio Cuzzucoli,
  • Antonio C. B. Burtoloso and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2024, 20, 3182–3190, doi:10.3762/bjoc.20.263

Graphical Abstract
  • 10.3762/bjoc.20.263 Abstract A novel study on the hypervalent iodine-mediated polyfluoroalkylation of sulfoxonium ylides was developed. Sulfoxonium ylides, known for their versatility and stability, are promising substrates for numerous transformations in synthetic chemistry. This report demonstrates the
  • reactants. Finally, DFT calculations provided insights about the mechanism of this transformation, which strongly suggest that an SN2 reaction is operative. Keywords: alkylation; DFT calculations; fluorine chemistry; hypervalent iodine; sulfoxonium ylide; sulphur ylides; Introduction Introducing fluorine
  • research groups recently reported the α-arylation between sulfoxonium ylides and diaryliodonium salts [33], and encouraged by this precedent, we envisioned that the chemistry between sulfoxonium ylides and hypervalent iodine compounds might be ripe for further exploitation. The trifluoroethyliodonium salt
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2024

Synthesis of extended fluorinated tripeptides based on the tetrahydropyridazine scaffold

  • Thierry Milcent,
  • Pascal Retailleau,
  • Benoit Crousse and
  • Sandrine Ongeri

Beilstein J. Org. Chem. 2024, 20, 3174–3181, doi:10.3762/bjoc.20.262

Graphical Abstract
  • can be noticed that the presence of an amino acid is compatible with the conditions of the reaction and did not interfere or significantly decrease the yield of the reaction (Scheme 3). Then, the N-carboxylate hydrazides 5a–d were firstly oxidized with iodine in the presence of potassium carbonate to
  • lead to the corresponding hydrazones 6a–d in good yields (69–80%). Surprisingly, these conditions were unsuitable for compounds 5e and 5f and led to the formation of numerous byproducts. Fortunately, the replacement of iodine with N-bromosuccinimide (NBS), previously reported for the oxidation of
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2024

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • Charu Bansal Oliver Ruggles Albert C. Rowett Alastair J. J. Lennox University of Bristol, School of Chemistry, Bristol, BS8 1TS, UK 10.3762/bjoc.20.258 Abstract The chemistry of hypervalent iodine (HVI) reagents has gathered increased attention towards the synthesis of a wide range of chemical
  • ; heterocycles; hypervalent iodine; oxidation; Introduction Halogenated carbocyclic and heterocyclic compounds are present in many active pharmaceutical ingredients [1][2]. The intramolecular halocyclisation of alkenes mediated by HVI(III) reagents allow access to a range of halogenated cyclic scaffolds in a
  • this review aims to fill. The synthetic uses of HVI reagents [14][15][16], their involvement in heterocycle synthesis [17][18][19], and alkene functionalisation [20][21], have each been well-reviewed elsewhere. Review Hypervalent iodine-mediated fluorocyclisation Fluorine can substantially improve the
PDF
Album
Review
Published 28 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • intermediate C with tert-butylperoxy radical B leads to the target product 38. Pathway II involves the oxidation of TBAI with TBHP to form hypervalent iodine compounds D and E. The reaction of species E with substrate 37 leads to the formation of intermediate F, which interacts with TBHP to yield product 38
  • . There is no consensus on the nature of the iodine species formed in reactions when using iodine-containing agents and their role in the mechanism of peroxidation. The selective peroxidation of malonodinitriles and cyanoacetic esters 39 with TBHP under Cu-catalysis without oxidative destruction was
  • further attacked by TBHP to give product 61. Benzyl alcohols 62 were also converted into tert-butyl perbenzoates 63 under the action of the TBAI/TBHP system (Scheme 22) [65][66]. During the process, TBHP oxidizes TBAI into iodine, which reacts with the second TBHP to generate tert-butylperoxy radical B
PDF
Album
Review
Published 18 Nov 2024

Structure and thermal stability of phosphorus-iodonium ylids

  • Andrew Greener,
  • Stephen P. Argent,
  • Coby J. Clarke and
  • Miriam L. O’Duill

Beilstein J. Org. Chem. 2024, 20, 2931–2939, doi:10.3762/bjoc.20.245

Graphical Abstract
  • Andrew Greener Stephen P. Argent Coby J. Clarke Miriam L. O'Duill School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK 10.3762/bjoc.20.245 Abstract Hypervalent iodine(III) reagents have become indispensable tools in organic synthesis, but gaps remain in the
  • and potential decomposition pathways will enable the future design and development of new reagents. Keywords: hypervalent iodine; reagent development; structural analysis; thermal stability; thermogravimetric analysis; Introduction Hypervalent iodine(III) reagents have experienced a renaissance in
  • enable access to chemical motifs that are difficult to synthesise using traditional approaches. However, gaps remain in the functionality they can transfer. Specifically, unstabilised alkyl groups are still underrepresented. For the development of new hypervalent iodine reagents to bridge this gap, it is
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • arylation; rearrangement reaction; Introduction The chemistry of hypervalent iodine compounds is well-established and they are prevalent as oxidants and electrophilic reagents in organic conversions [1][2][3]. They have gained significant attention due to their high reactivity and ability to carry out
  • various useful transformations under mild, eco-friendly reaction conditions [4][5][6][7][8][9][10][11]. Various review articles [12][13][14][15][16][17][18][19][20][21][22][23][24][25][26] and books [27][28] have appeared on the chemistry of hypervalent iodine compounds. In the past two decades
  • , diaryliodonium salts (DAIS), a versatile category of hypervalent iodine compounds, have seen significant progress in hypervalent iodine chemistry. Their efficiency and environmentally friendly characteristics have positioned DAIS as next-generation arylation reagents [29][30]. Other than aromatic electrophiles
PDF
Album
Review
Published 13 Nov 2024

N-Glycosides of indigo, indirubin, and isoindigo: blue, red, and yellow sugars and their cancerostatic activity

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 2840–2869, doi:10.3762/bjoc.20.240

Graphical Abstract
  • intermediate C which underwent extrusion of iodine and dipropyl disulfide to give intermediate D. Subsequent reaction with acetic anhydride, pyridine and KHF2 resulted in the replacement of the TMS by acetyl groups which was important for practical reasons (stability during chromatography). The reaction of 13
PDF
Album
Review
Published 08 Nov 2024

The scent gland composition of the Mangshan pit viper, Protobothrops mangshanensis

  • Jonas Holste,
  • Paul Weldon,
  • Donald Boyer and
  • Stefan Schulz

Beilstein J. Org. Chem. 2024, 20, 2644–2654, doi:10.3762/bjoc.20.222

Graphical Abstract
  • (DMDS, 50 µL) and a 0.24 M iodine solution in diethyl ether (5 µL). The mixture was allowed to stand sealed at 40 °C for 15 h. Subsequently, the mixture was diluted with pentane (200 µL) and washed with a saturated sodium thiosulfate solution. The organic phase was dried over sodium sulfate and
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • ]. This mild method proceeds with a broad range of unactivated alkenes, including natural products and pharmaceutical derivatives such as sulbactam acid and oxaprozin. Mechanistic studies revealed that the reaction was initiated by the electrochemical oxidation of iodide ions, generating iodine radicals
  • that dimerize to form iodine (I2). Subsequent anodic oxidation of in-situ formed Et3N produced an α-amino radical. The iodine then reacts with the alkene to form an iodonium intermediate, which undergoes intramolecular cyclization with losing an electron, and a second water attack to yield the desired
PDF
Album
Review
Published 09 Oct 2024
Other Beilstein-Institut Open Science Activities