Search results

Search for "substitution reactions" in Full Text gives 132 result(s) in Beilstein Journal of Organic Chemistry.

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • generated large electrostatic effects by functionalizing the capsule exteriors with charged groups (Figure 4D) [136][137]. Observed rate accelerations for capsule-promoted nucleophilic substitution reactions demonstrate significant enthalpic stabilization of the transition state attributable due to the
  • nucleophile and electrophile in a glycosylation reaction [105]. (D) An externally charged cavitand promotes charge-stabilized nucleophilic substitution reactions of hydrophobically encapsulated substrates [136][137]. (A) Metal-organic cages and key modes in catalysis. (B) Charged metals or ligands can result
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • glycosylation reaction between the two extremes of substitution reactions enables the synthetic chemists to manoeuvre and design the coupling reactions according to the regio- and stereochemical demand. In chemical glycosylation, the role of protecting groups in directing the attack of the incoming nucleophile
PDF
Album
Review
Published 17 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • Zi-Ying Xiao Jing Sun Chao-Guo Yan College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China 10.3762/bjoc.21.21 Abstract In this paper, the nucleophilic substitution reactions of various N- and P-containing nucleophiles to MBH carbonates of isatins were investigated
  • synthetic methodologies and in continuation of our aim to develop domino reactions based on MBH carbonates of isatins for efficient construction of diverse polycyclic spiroindolinones [42][43][44][45][46][47][48][49][50][51][52], herein, we wish to report the nucleophilic substitution reactions of various N
  • investigated nucleophilic substitution reactions of various N- and P-containing nucleophiles to MBH carbonates of isatins. It is interesting to find that diverse functionalized 3-substituted oxindole derivatives were successfully prepared in satisfactory yields and with high diastereoselectivity. In addition
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • , photoredox-catalytic, and nucleophilic aromatic substitution reactions, as well as in the two-step synthesis of cyclobutanone. The molecules synthesized under the optimal conditions are presented in Figure 6b, employing the stable noisy optimization by branch and fit (SNOBFIT) algorithm. SNOBFIT offers a
PDF
Album
Review
Published 06 Jan 2025

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
PDF
Album
Review
Published 13 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • expand the scope of transition metal-catalyzed substitution reactions. Since its discovery in 2022, copper-catalyzed yne-allylic substitution has undergone rapid development and significant progress has been made using the key copper vinyl allenylidene intermediates. This review summarizes the
  • propargylic substitution and allylic substitution, but represents a new type of reaction mode, and greatly expands the scope of transition metal-catalyzed substitution reactions. Currently, yne-allylic substitutions affording 1,3- or 1,4-enynes, remote substitutions through dearomatization-rearomatization
PDF
Album
Review
Published 31 Oct 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • successfully synthesized on a gram scale through a three-step reaction sequence. The process began with 2,6-diisopropylphenylamine, which underwent alkylation, formylation, and substitution reactions. The carbene synthesis was then achieved via a two-step process involving ynamide annulation, followed by
PDF
Album
Editorial
Published 28 Oct 2024

Selective hydrolysis of α-oxo ketene N,S-acetals in water: switchable aqueous synthesis of β-keto thioesters and β-keto amides

  • Haifeng Yu,
  • Wanting Zhang,
  • Xuejing Cui,
  • Zida Liu,
  • Xifu Zhang and
  • Xiaobo Zhao

Beilstein J. Org. Chem. 2024, 20, 2225–2233, doi:10.3762/bjoc.20.190

Graphical Abstract
  • thioesters and acyl chlorides (Scheme 1a, path 7) [30]. For β-keto amides, they could be efficiently synthesized from the nucleophilic substitution reactions of amines with β-keto acids (Scheme 1b, path 1) [31][32][33], β-keto esters (Scheme 1b, path 2) [34] and the nucleophilic addition reactions of amines
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2024

A new platform for the synthesis of diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions

  • Vitor A. S. Almodovar and
  • Augusto C. Tomé

Beilstein J. Org. Chem. 2024, 20, 1933–1939, doi:10.3762/bjoc.20.169

Graphical Abstract
  • synthesis of highly fluorescent DPP derivatives through straightforward nucleophilic aromatic substitution reactions with thiols and phenols. These nucleophilic substitutions occur at room temperature and manifest a remarkable selectivity for the 4-position of the pentafluorophenyl groups. Both symmetrical
  • generating new DPP derivatives through nucleophilic aromatic substitution reactions with thiols and phenols. The main objective of this study was to employ the N,N’-bis(pentafluorobenzyl)-DPP 2 as an electrophile and investigate its reactivity with thiols and phenols (Scheme 1). All SNAr reactions were
  • deeper understanding of their significance. Conclusion In conclusion, novel DPP derivatives were synthesized through the reaction of a N,N’-bis(pentafluorobenzyl)-DPP with thiols and phenols. The nucleophilic aromatic substitution reactions took place under exceptionally mild experimental conditions, and
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Chiral bifunctional sulfide-catalyzed enantioselective bromolactonizations of α- and β-substituted 5-hexenoic acids

  • Sao Sumida,
  • Ken Okuno,
  • Taiki Mori,
  • Yasuaki Furuya and
  • Seiji Shirakawa

Beilstein J. Org. Chem. 2024, 20, 1794–1799, doi:10.3762/bjoc.20.158

Graphical Abstract
  • product 3a for further transformations. Comparable yield and enantioselectivity were observed relative to those of the smaller-scale reaction (0.1 mmol scale, Scheme 4). The bromomethyl group in 3a readily undergoes nucleophilic substitution reactions, leading to the formation of optically active δ
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2024

pKalculator: A pKa predictor for C–H bonds

  • Rasmus M. Borup,
  • Nicolai Ree and
  • Jan H. Jensen

Beilstein J. Org. Chem. 2024, 20, 1614–1622, doi:10.3762/bjoc.20.144

Graphical Abstract
  • combination with an ML model to predict a variety of properties. These properties encompass the site of metabolism [31][33], the strengths of hydrogen bond donors and acceptors [34][35][36], and the regioselectivity of electrophilic aromatic substitution reactions [14]. Building on the methodology from
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Competing electrophilic substitution and oxidative polymerization of arylamines with selenium dioxide

  • Vishnu Selladurai and
  • Selvakumar Karuthapandi

Beilstein J. Org. Chem. 2024, 20, 1221–1235, doi:10.3762/bjoc.20.105

Graphical Abstract
  • using SeO2 as an electrophile source in aromatic electrophilic substitution reactions. Keywords: arylamines; electrophilic substitution; oxamides: polymerization; selenium dioxide; Introduction Organoselenium compounds have received considerable attention due to interesting medicinal properties, such
  • interest [12][13]. The various approaches used for selenation of aromatic compounds include directed lithiation [14][15], copper-catalyzed selenation [16][17][18], and aromatic nucleophilic substitution reactions [19][20][21][22]. Electrophilic selenium reagents (e.g., phenylselenenyl bromide) have often
  • arylselenium compounds [26][27][28]. Noteworthy examples are the use of SeO2 as selenium source in aromatic electrophilic substitution reactions [27][28][29]. Selenium dioxide is a well-known oxidizing agent for the allylic oxidation and oxidation of α-CH bonds located adjacent to electron-withdrawing groups
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • the displacement of the chloro substituent with the allyl group, affording 21 in good yield. Electrophilic aromatic substitution reactions at the chloroalkyl ether site were possible when promoted by aluminium chloride, with anisole and diphenyl ether giving addition products 22 and 23 containing
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Synthesis of new representatives of A3B-type carboranylporphyrins based on meso-tetra(pentafluorophenyl)porphyrin transformations

  • Victoria M. Alpatova,
  • Evgeny G. Rys,
  • Elena G. Kononova and
  • Valentina A. Ol'shevskaya

Beilstein J. Org. Chem. 2024, 20, 767–776, doi:10.3762/bjoc.20.70

Graphical Abstract
  • biomolecules via the nucleophilic aromatic (SNAr) substitution reactions [15][16]. A variety of nucleophiles such as amines [17][18], alcohols [18][19][20], thiols [17][19][21][22][23], and carboranes [17][24][25][26][27] have been studied in selective SNAr substitution reactions of the p-fluorine atoms in
  • conjugates with functionalized linker groups suitable for bioconjugation or which may be efficient for PDT and BNCT improvement. Results and Discussion Synthesis Nucleophilic substitution reactions of the four p-fluorine atoms in 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (1) are well studied [15][16
  • studied the nucleophilic substitution reactions of the p-fluorine atom in the pentafluorophenyl-containing porphyrin 6 with thiol-substituted compounds such as 2-mercaptoethanol (15), cysteamine hydrochloride (16), and 3-chloro-1-propanethiol (17) as shown in Scheme 5. The reactions proceeded readily in
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • allenes that were never used as substrates in interrupted radical Heck/allylic substitution reactions. As summarized in Scheme 3, unsaturated γ-AA derivatives were observed in this reaction albeit with poor stereoselectivity. Linear amines containing alkyl, hydroxy, and terminal alkenyl groups were
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • reaction with neutral or anionic bases. Keywords: dipyrido[3,2-e:2′,3′-h]acenaphthene (acenaphthylene); hydrogen bonding; π-stacking; substitution reactions; tele-elimination; Introduction Quinoline derivatives, classical nitrogen-containing heterocycles, are widely distributed in nature in various forms
  • corresponding acenaphthylene by the classical method using chloranil. The potential activity of 5(8)-nitro groups in dipyridoacenaphthylene in nucleophilic substitution reactions was shown, and a 5,8-dimethoxy derivative containing both donor substituents and an acenaphthylene fragment was synthesized
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Cyclization of 1-aryl-4,4,4-trichlorobut-2-en-1-ones into 3-trichloromethylindan-1-ones in triflic acid

  • Vladislav A. Sokolov,
  • Andrei A. Golushko,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2023, 19, 1460–1470, doi:10.3762/bjoc.19.105

Graphical Abstract
  • conjugated enones afford O,C-diprotonated forms under superelectrophilic activation conditions. These dications can participate in electrophilic aromatic substitution reactions with arenes ([11] and references therein). Recently, we have shown that the reaction of (E)-5,5,5-trichloropent-3-en-2-one [Cl3CCH
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • protodemetalation to provide ultimately the 1,4-addition adduct. In the presence of carbonyl acceptors, aldol condensation occurs providing overall a tandem 1,4-addition–aldol process. When a tert-butanesulfinyl moiety is present on the nitrogen atom, these electrophilic substitution reactions occur with good
  • is poised to undergo β-fragmentation, but this process can be outcompeted by in situ electrophilic substitution reactions which offer synthetically useful procedures: 1,4-addition (for substrates having N–H bonds) or tandem 1,4-addition–aldol reactions (in the presence of carbonyl electrophiles
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita–Baylis–Hillman (MBH) alcohols and acetates

  • Olfa Mhasni,
  • Jalloul Bouajila and
  • Farhat Rezgui

Beilstein J. Org. Chem. 2023, 19, 1251–1258, doi:10.3762/bjoc.19.93

Graphical Abstract
  • Michael acceptor unit. They have found application as valuable synthons and useful precursors for the synthesis of various biologically active molecules [1][2][3]. Recently, MBH adducts, as electrophilic substrates, have been employed to achieve fruitful results in allylic substitution reactions with
  • various nucleophiles, including C- and heteronucleophiles, such as compounds bearing –OH, –SH, and –NH groups [4][5][6][7]. Among them, the carbon–nitrogen bond formation through N-nucleophilic substitution reactions plays a central role for the synthesis of numerous compounds exhibiting various
  • precursors in nucleophilic allylic substitution reactions with amines, presumably due to the perceived poor leaving group ability and low reactivity of the hydroxy group. Interestingly, the direct nucleophilic substitution of the corresponding alcohols has drawn much attention because of the availability of
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • stoichiometric waste. The challenges associated with the functionalization of pyridine are based on the low reactivity of the pyridine ring system for undergoing substitution reactions. This is attributed to the electron-deficient nature of the ring system due to the presence of the sp2-hybridized nitrogen atom
  • . In addition, the lone pair electrons of the nitrogen atom interact with Lewis acids instead of the π-electrons of the ring system thus resulting to its reduced reactivity for electrophilic aromatic substitution reactions, such as a Friedel–Crafts reaction [21][22][23]. Hence, it is challenging to
PDF
Album
Review
Published 12 Jun 2023

Nucleophile-induced ring contraction in pyrrolo[2,1-c][1,4]benzothiazines: access to pyrrolo[2,1-b][1,3]benzothiazoles

  • Ekaterina A. Lystsova,
  • Maksim V. Dmitriev,
  • Andrey N. Maslivets and
  • Ekaterina E. Khramtsova

Beilstein J. Org. Chem. 2023, 19, 646–657, doi:10.3762/bjoc.19.46

Graphical Abstract
  • 16a–d, the formation of compounds 17 could proceed via a similar pathway, since Nu-groups of compounds 16a–d are good bulky leaving groups for nucleophilic substitution reactions. Nevertheless, the pathway of formation of compounds 17 is questionable and may become a subject of a new study. Conclusion
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2023

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • substitution reactions Metal-free coupling reaction through nucleophilic substitution of H-atom (SNH) In 2020, a C–H/C–Li coupling reaction between 2H-imidazole 1-oxides and pentafluorophenyllithium under transition metal-free conditions was reported by Timofey D. Moseev and co-workers [17]. The reaction
PDF
Album
Review
Published 22 Nov 2022

Modular synthesis of 2-furyl carbinols from 3-benzyldimethylsilylfurfural platforms relying on oxygen-assisted C–Si bond functionalization

  • Sebastien Curpanen,
  • Per Reichert,
  • Gabriele Lupidi,
  • Giovanni Poli,
  • Julie Oble and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2022, 18, 1256–1263, doi:10.3762/bjoc.18.131

Graphical Abstract
  • on the SiMe(OSiMe3)2 unit, which were readily converted through Pd- or Cu-catalyzed electrophilic substitution reactions into an array of furfurals decorated at C3 with carbon- or heteroatom-containing substituents (Scheme 1). Conversely, all of our subsequent efforts to achieve cross-coupling
  • ). With the 3-silylated 2-furyl carbinol substrates at hand, we then considered C–Si bond activation strategies relying on the assistance of the oxygen atom to promote electrophilic substitution reactions with carbon electrophiles. C3–Si bond functionalization through intramolecular activation by
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2022

Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2-a]pyridines and terminal alkynes

  • Mio Matsumura,
  • Kaho Tsukada,
  • Kiwa Sugimoto,
  • Yuki Murata and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 863–871, doi:10.3762/bjoc.18.87

Graphical Abstract
  • synthesized using a simple operation that can be performed under aerobic conditions. Moreover, the results showed that the obtained compounds underwent nucleophilic substitution reactions involving the elimination of the alkyne moiety on Se atoms to form aryl or alkyl imidazopyridinyl selenides and
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2022
Other Beilstein-Institut Open Science Activities