Search results

Search for "catalysis" in Full Text gives 1263 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Visible-light-driven NHC and organophotoredox dual catalysis for the synthesis of carbonyl compounds

  • Vasudevan Dhayalan

Beilstein J. Org. Chem. 2025, 21, 2584–2603, doi:10.3762/bjoc.21.200

Graphical Abstract
  • chemistry. In particular, dual catalysis combining N-heterocyclic carbenes (NHCs) with organophotocatalysts (e.g., 4CzIPN, eosin Y, rhodamine, 3DPAFIPN, Mes-Acr-Me+ClO4−) has emerged as a powerful photocatalytic strategy for efficiently constructing a wide variety of carbonyl compounds via radical cross
  • -coupling processes. This cooperative organic dual catalysis has great potential in medicinal, pharmaceutical, and materials science applications, including the development of organic semiconductors and polymers. In recent years, NHC-involved photocatalysis has attracted considerable attention in synthetic
  • organic chemistry, and particularly in the late-stage functionalization of bioactive compounds, drugs, and natural products. This review highlights recent advances in NHC–organophotoredox dual catalysis, focusing on methodology development, mechanistic insights, and reaction scope for synthesizing
PDF
Album
Review
Published 21 Nov 2025

Isoorotamide-based peptide nucleic acid nucleobases with extended linkers aimed at distal base recognition of adenosine in double helical RNA

  • Grant D. Walby,
  • Brandon R. Tessier,
  • Tristan L. Mabee,
  • Jennah M. Hoke,
  • Hallie M. Bleam,
  • Angelina Giglio-Tos,
  • Emily E. Harding,
  • Vladislavs Baskevics,
  • Martins Katkevics,
  • Eriks Rozners and
  • James A. MacKay

Beilstein J. Org. Chem. 2025, 21, 2513–2523, doi:10.3762/bjoc.21.193

Graphical Abstract
  • including regulation and catalysis [1][2][3][4][5][6]. As a result, targeting ncRNA through molecular recognition would afford important tools for molecular biology and biotechnology [7]. One approach focuses on recognition of double-helical regions of RNA (dhRNA) using oligomers called triplex-forming
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2025

Palladium-catalyzed regioselective C1-selective nitration of carbazoles

  • Vikash Kumar,
  • Jyothis Dharaniyedath,
  • Aiswarya T P,
  • Sk Ariyan,
  • Chitrothu Venkatesh and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2025, 21, 2479–2488, doi:10.3762/bjoc.21.190

Graphical Abstract
  • valuable platform for the selective functionalization of carbazoles, offering potential applications in optoelectronics, functional organic materials, and related areas while contributing to the advancement of C–H activation methodologies. Keywords: C–H activation; carbazole; catalysis; nitration
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2025

Synthesis of the tetracyclic skeleton of Aspidosperma alkaloids via PET-initiated cationic radical-derived interrupted [2 + 2]/retro-Mannich reaction

  • Ru-Dong Liu,
  • Jian-Yu Long,
  • Zhi-Lin Song,
  • Zhen Yang and
  • Zhong-Chao Zhang

Beilstein J. Org. Chem. 2025, 21, 2470–2478, doi:10.3762/bjoc.21.189

Graphical Abstract
  • photoredox catalysis) processes [8][9][10]. Cyclobutenone (A) is a versatile C4 synthon [11] – its [2 + 2] photocyclization yields B, featuring a strained bicyclo[2.2.0]hexane unit [12], which can fragment to form C (Figure 1a) [13][14]. However, competitive C1–C4 bond cleavage under irradiation or heating
  • leads to ketene D, which can undergo cycloaddition with an alkene to yield E. This fragmentation pathway dominates under various conditions (e.g., transition-metal catalysis, nucleophilic addition) and is driven by ring-strain release [11]. PET, an alternative to direct excitation and EnT, enables the
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2025

Catalytic enantioselective synthesis of selenium-containing atropisomers via C–Se bond formations

  • Qi-Sen Gao,
  • Zheng-Wei Wei and
  • Zhi-Min Chen

Beilstein J. Org. Chem. 2025, 21, 2447–2455, doi:10.3762/bjoc.21.186

Graphical Abstract
  • Atropisomers are not only prevalent in biologically active natural products and pharmaceuticals, but they have also garnered increasing attention for their effectiveness as ligands and catalysts in the field of catalytic asymmetric synthesis. Asymmetric catalysis serves as a key strategy for the
  • . Keywords: asymmetric catalysis; atropisomer; chiral selenium-containing compound; C–Se bond formation; Introduction Selenium is an essential trace element for human body [1]. It plays an important role in metabolism. In 1817, the Swedish chemist Berzelius found that red residual mud was attached to the
  • compounds can participate in asymmetric synthesis reactions and construct chiral molecules with specific stereoconfiguration, which is particularly critical for drug synthesis [9]. In the field of organic catalysis, chiral organic selenium-containing compounds can be used as chiral ligands or catalysts to
PDF
Album
Review
Published 06 Nov 2025

Transformation of the cyclohexane ring to the cyclopentane fragment of biologically active compounds

  • Natalya Akhmetdinova,
  • Ilgiz Biktagirov and
  • Liliya Kh. Faizullina

Beilstein J. Org. Chem. 2025, 21, 2416–2446, doi:10.3762/bjoc.21.185

Graphical Abstract
  • allylic oxidation using H2SeO3-dioxane system to form the C30 aldehyde 47, or by the ozonolytic cleavage of the double bond between C20 and C29 to produce 20-methyl-3-ethyldiketone 48 [36]. Intramolecular nitrile–anionic cyclization of ketone 46 or diketone 48 under conditions of basic catalysis proceeded
  • 30% and a selectivity of 70% at −100 °C (Scheme 21). 2.3 Wolff rearrangement The Wolff rearrangement is the transformation of α-diazoketones into acids or their derivatives through heating, catalysis, or UV irradiation in the presence of water, alcohols, ammonia, amines, etc. The Wolff rearrangement
PDF
Album
Review
Published 06 Nov 2025

Adaptive experimentation and optimization in organic chemistry

  • Artur M. Schweidtmann and
  • Philippe Schwaller

Beilstein J. Org. Chem. 2025, 21, 2367–2368, doi:10.3762/bjoc.21.180

Graphical Abstract
  • de Lausanne (EPFL), Lausanne, Switzerland National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 10.3762/bjoc.21.180 The field of organic chemistry is undergoing a remarkable transformation. The convergence of laboratory
PDF
Editorial
Published 03 Nov 2025

Rotaxanes with integrated photoswitches: design principles, functional behavior, and emerging applications

  • Jullyane Emi Matsushima,
  • Khushbu,
  • Zuliah Abdulsalam,
  • Udyogi Navodya Kulathilaka Conthagamage and
  • Víctor García-López

Beilstein J. Org. Chem. 2025, 21, 2345–2366, doi:10.3762/bjoc.21.179

Graphical Abstract
  • patterns that dictate the position of the macrocycle. Later, Leigh and co-workers introduced a new strategy for dynamically controlling asymmetric catalysis using a hydrazone-based rotaxane [72]. The axle features a hydrazone photoswitch and a pseudo-meso 2,5-disubstituted pyrrolidine organocatalytic unit
PDF
Album
Review
Published 31 Oct 2025

Comparative analysis of complanadine A total syntheses

  • Reem Al-Ahmad and
  • Mingji Dai

Beilstein J. Org. Chem. 2025, 21, 2334–2344, doi:10.3762/bjoc.21.178

Graphical Abstract
  • strategies and creative tactics, reflecting how emerging synthetic capabilities and concepts can positively impact natural product total synthesis. Keywords: biomimetic synthesis; C–H functionalization; complanadine; lycopodium alkaloid; skeletal editing; total synthesis; transition metal catalysis
  • approaches. Overall, their synthesis highlights the impact of enabling transition metal catalysis on natural product total synthesis. The Siegel synthesis starts with chiral pool molecule (+)-pulegone (14), which encodes the first stereocenter of the entire sequence. (+)-Pulegone was converted to compound 15
  • catalysis, C–H activation methods, biomimetic synthesis, classic rearrangements, skeletal editing logic, and others. In addition, these efforts enabled the identification of the potential cellular target of complanadine A, validation of its neurotrophic activity, establishment of preliminary structure
PDF
Album
Review
Published 30 Oct 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • describes several important catalytic asymmetric strategies applied to enantioselective radical reactions, including chiral Lewis acid catalysis, organocatalysis, photoredox catalysis, chiral transition-metal catalysis and photoenzymatic catalysis. The application of electrochemistry to asymmetric radical
  • transformations is also discussed. Keywords: chiral Lewis acid; electrochemistry; enantioselective radical reaction; organocatalysis; photoenzymatic catalysis; photoredox; Introduction Asymmetric catalysis plays an integral role in the enantioselective synthesis of organic compounds. A wide variety of
  • the 1990s. Since then, meticulous research by several research groups has led to significant advances in this area [4][5][6][7][8]. This perspective focuses on several important contributions to the science of asymmetric radical reactions. Pioneering work on chiral Lewis acid catalysis and iminium
PDF
Album
Perspective
Published 28 Oct 2025

Pathway economy in cyclization of 1,n-enynes

  • Hezhen Han,
  • Wenjie Mao,
  • Bin Lin,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2025, 21, 2260–2282, doi:10.3762/bjoc.21.173

Graphical Abstract
  • 1,5-enynes 1 as substrates involving alkyne alkoxylation and dienol ether aromaticity-driven processes (Scheme 2) [8]. The reaction pathway was decisively influenced by the choice of solvent. Under gold catalysis, with toluene as the solvent and 2 equiv of methanol serving as the nucleophile, the
  • under gold(I) catalysis through a substituent-controlled strategy (Scheme 8) [15]. Substrates with heteroaryl substituents underwent 6-endo-dig cyclization via gold-heteroatom coordination, furnishing the lactone-fused pyran scaffold 34 (Scheme 8, path a). Substrates with aryl substituents at the
  • of propiolamide was equipped with a bulky substituent, the 6-exo-dig cyclization was initially triggered under gold(I)-catalysis, leading to intermediate 43. Then the indolizino[8,7-b]indole skeleton 44 ultimately was constructed via a tandem 5-exo-dig cyclization (Scheme 10, path a). When the indole
PDF
Album
Review
Published 27 Oct 2025

Pd-catalyzed dehydrogenative arylation of arylhydrazines to access non-symmetric azobenzenes, including tetra-ortho derivatives

  • Loris Geminiani,
  • Kathrin Junge,
  • Matthias Beller and
  • Jean-François Soulé

Beilstein J. Org. Chem. 2025, 21, 2234–2242, doi:10.3762/bjoc.21.170

Graphical Abstract
  • the presence of water, highlighting its robustness. Keywords: azo compounds; cross-coupling; domino catalysis; palladium; phosphine ligands; Introduction Azobenzenes are a widely studied class of compounds known for their distinctive photoresponsive properties, rendering them valuable in a variety
  • and co-workers developed a Chan–Evans–Lam-type oxidative cross-coupling reaction between N-arylphthalic hydrazides and arylboronic acids using copper catalysis [41]. Similarly, in 2003, Lee and co-workers introduced a desymmetrization approach employing simpler N=N precursors, specifically N-protected
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2025

Electrochemical cyclization of alkynes to construct five-membered nitrogen-heterocyclic rings

  • Lifen Peng,
  • Ting Wang,
  • Zhiwen Yuan,
  • Bin Li,
  • Zilong Tang,
  • Xirong Liu,
  • Hui Li,
  • Guofang Jiang,
  • Chunling Zeng,
  • Henry N. C. Wong and
  • Xiao-Shui Peng

Beilstein J. Org. Chem. 2025, 21, 2173–2201, doi:10.3762/bjoc.21.166

Graphical Abstract
  • reaction mechanisms are disclosed if available. Keywords: alkyne; catalysis; cyclization; electrochemistry; five-membered ring; Introduction Organic five-membered rings, an essential class of organic compounds, not only are frequently used as important starting materials, intermediates or ligands in
  • nucleophilic cyclization to give D. The fracture of the N–O bond in D yielded E. Elimination of selenium cation A from E and the following cyclization afforded 38a. This transformation, combining selenium catalysis and organic electrosynthesis, proceeded smoothly at rt without external oxidants and metal
PDF
Album
Review
Published 16 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
  • Jingjing Jiang Muhammad Noman Haider Tariq Florence Popowycz Yanlong Gu Yves Queneau Université Lyon 1, INSA Lyon, CNRS, CPE Lyon, ICBMS, UMR5246, 69622 Villeurbanne, France Institute of Physical Chemistry and Industrial Catalysis, School of Chemistry and Chemical Engineering, Huazhong University
  • the Lewis acidic Sn-Beta was also reported for this reaction providing succinic acid in 53% yield. Sn-Beta accelerated the Baeyer–Villiger oxidation of furfural to the 2(3H)-furanone intermediate by activating furfural (Scheme 45) [152]. Two methods, one using CO under palladium catalysis, and one
  • catalysis. The mechanism first involves the isomerization of xylose into xylulose under Lewis acid-type catalysis, and the subsequent dehydration of xylulose into furfural under Brønsted acid-type catalysis (Scheme 47). Humins are naturally formed in all processes involving the acid-catalyzed degradation of
PDF
Album
Review
Published 15 Oct 2025

Multicomponent reactions IV

  • Thomas J. J. Müller and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2025, 21, 2082–2084, doi:10.3762/bjoc.21.163

Graphical Abstract
  • a strong emphasis on heterocycle synthesis. Beyond traditional condensation-based approaches, mechanistically innovative crossovers – linking metal catalysis with radical chemistry and, more recently, with photo(redox) catalysis – are opening entirely new avenues for MCR development. Finally, seven
PDF
Album
Editorial
Published 14 Oct 2025

Measuring the stereogenic remoteness in non-central chirality: a stereocontrol connectivity index for asymmetric reactions

  • Ivan Keng Wee On,
  • Yu Kun Choo,
  • Sambhav Baid and
  • Ye Zhu

Beilstein J. Org. Chem. 2025, 21, 1995–2006, doi:10.3762/bjoc.21.155

Graphical Abstract
  • chiral molecules. Keywords: asymmetric reactions; axial chirality; catalysis; planar chirality; stereocontrol; Introduction Chirality is a ubiquitous and fundamental phenomenon in nature and thus holds an irreplaceable position in organic synthesis. At its most rudimental definition, chirality in a
  • by the reaction types, the mode of catalysis, or the nature of the stereogenic centers. Unlike central chirality, the stereogenic remoteness of non-central chirality could not be measured using a central stereogenic atom as the starting point. The stereocontrol connectivity index allows
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2025

Aryl iodane-induced cascade arylation–1,2-silyl shift–heterocyclization of propargylsilanes under copper catalysis

  • Rasma Kroņkalne,
  • Rūdolfs Beļaunieks,
  • Armands Sebris,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2025, 21, 1984–1994, doi:10.3762/bjoc.21.154

Graphical Abstract
  • synthetic potential of iodane-mediated carbofunctionalization under copper catalysis. Keywords: arylation reactions; copper-catalysis; iodanes; propargylsilanes; 1,2-silyl shift; Introduction Highly electrophilic hypervalent iodine(III) reagents are considered as arene electrophilic synthons, making them
  • the reagents of choice for arylation reactions, where an umpolung of reactivity is required [1]. Arylations employing diaryl-λ3-iodanes can be performed under metal-free [2] or metal-catalyzed conditions. For alkyne arylations [Cu] [3] or [Pd] catalysis [4][5][6] is typically employed. Internal
  • the CuBF4 acetonitrile complex was the next best choice (77% by NMR, Table 3, entry 5). Heterogenous catalysis using Cu2O gave a mixture of the arylated product 8a and protodecupration side-product 12, both in poor yields (Table 3, entry 6). Increased catalyst loading (11 mol % of [CuOTf]2∙PhH
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2025

Photochemical reduction of acylimidazolium salts

  • Michael Jakob,
  • Nick Bechler,
  • Hassan Abdelwahab,
  • Fabian Weber,
  • Janos Wasternack,
  • Leonardo Kleebauer,
  • Jan P. Götze and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2025, 21, 1973–1983, doi:10.3762/bjoc.21.153

Graphical Abstract
  • research has demonstrated that NHCs are also capable of stabilizing radical or excited-state species [12][13]. In 2020, our group reported the concept of photo-NHC catalysis where direct excitation of acylazolium intermediates generated from o-toluoyl fluoride substrates with UV-A light resulted in a novel
  • -electron reduction delivering the same stabilized radical C. Beginning with a seminal report by di Rocco and Rovis in 2012 [21], the combination of NHC and photoredox catalysis has recently been the subject of intense research activity [22][23][24][25][26][27][28][29][30]. Employing the latter reductive
  • applications, are underway in our laboratory. (a) Combining N-heterocyclic carbene (NHC) organocatalysis with photoredox catalysis for radical–radical coupling reactions. (b) This work: light-mediated reduction of acylimidazolium species 1 with the tertiary amine DIPEA or the simple silane HSiEt3. Initial test
PDF
Album
Supp Info
Letter
Published 25 Sep 2025

Synthesis of N-doped chiral macrocycles by regioselective palladium-catalyzed arylation

  • Shuhai Qiu and
  • Junzhi Liu

Beilstein J. Org. Chem. 2025, 21, 1917–1923, doi:10.3762/bjoc.21.149

Graphical Abstract
  • ; inherent chirality; N-doped macrocycle; nonplanarity; regioselective cyclization; Introduction Chiral macrocycles have attracted significant research interest owing to their diverse applications in enantioselective recognition [1][2], catalysis [3][4], and circularly polarized luminescence [5][6
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2025

Stereoselective electrochemical intramolecular imino-pinacol reaction: a straightforward entry to enantiopure piperazines

  • Margherita Gazzotti,
  • Fabrizio Medici,
  • Valerio Chiroli,
  • Laura Raimondi,
  • Sergio Rossi and
  • Maurizio Benaglia

Beilstein J. Org. Chem. 2025, 21, 1897–1908, doi:10.3762/bjoc.21.147

Graphical Abstract
  • products, agrochemicals, and pharmacologically active compounds. Enantiomerically pure 1,2-diamines and their derivatives are also increasingly used in stereoselective synthesis, particularly as chiral auxiliaries or as ligands for metal complexes in asymmetric catalysis [1]. Metal-based reductants
  • photocatalysts (Scheme 2). The combination of photoredox catalysis with imine activation enabled the reductive coupling of imines under mild reaction conditions, providing direct access to benzyl and aryl vicinal diamines with good to excellent yields. Organic electrochemistry represents an attractive and
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2025

Chiral phosphoric acid-catalyzed asymmetric synthesis of helically chiral, planarly chiral and inherently chiral molecules

  • Wei Liu and
  • Xiaoyu Yang

Beilstein J. Org. Chem. 2025, 21, 1864–1889, doi:10.3762/bjoc.21.145

Graphical Abstract
  • with the more recently introduced inherent chirality. As one of the most prominent chiral organocatalysts, chiral phosphoric acid (CPA) catalysis has proven highly effective in synthesizing centrally and axially chiral molecules. However, its potential in the asymmetric construction of other types of
  • molecular chirality has been investigated comparatively less. This Review provides a comprehensive overview of the recent emerging advancements in asymmetric synthesis of planarly chiral, helically chiral and inherently chiral molecules using CPA catalysis, while offering insights into future developments
  • within this domain. Keywords: asymmetric catalysis; chiral phosphoric acid; helical chirality; inherent chirality; planar chirality; Introduction Since the seminal works by Akiyama [1] and Terada [2] et al. in 2004 demonstrated the application of BINOL-derived chiral phosphoric acids (CPAs) in
PDF
Album
Review
Published 10 Sep 2025

Systematic pore lipophilization to enhance the efficiency of an amine-based MOF catalyst in the solvent-free Knoevenagel reaction

  • Pricilla Matseketsa,
  • Margret Kumbirayi Ruwimbo Pagare and
  • Tendai Gadzikwa

Beilstein J. Org. Chem. 2025, 21, 1854–1863, doi:10.3762/bjoc.21.144

Graphical Abstract
  • efficiency. Keywords: metal-organic frameworks; post-synthesis modification; supramolecular catalysis; Introduction Most enzymatic reactions take place in multifunctional cavities in which multiple amino acid residues work cooperatively to orient and activate reactants [1][2][3]. These residues may also
  • enhance covalent and/or acid–base catalysis via any combination of non-covalent interactions (hydrogen bonding, π–π stacking, lipophilic interactions, etc) [4][5][6]. Inspired by enzymes, Nature's most efficient catalysts, chemists have long endeavored to synthesize catalytic materials in which multiple
  • -inspired materials, PSM allows us to incorporate functionalities that are pertinent to catalysis but that would normally interfere with MOF assembly, e.g. hydrogen bonding groups like –OH and –COOH that are difficult to obtain as free uncoordinated moieties within MOF pores [28][29]. Given these benefits
PDF
Album
Supp Info
Letter
Published 09 Sep 2025

Photoswitches beyond azobenzene: a beginner’s guide

  • Michela Marcon,
  • Christoph Haag and
  • Burkhard König

Beilstein J. Org. Chem. 2025, 21, 1808–1853, doi:10.3762/bjoc.21.143

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2025

Fe-catalyzed efficient synthesis of 2,4- and 4-substituted quinolines via C(sp2)–C(sp2) bond scission of styrenes

  • Prafull A. Jagtap,
  • Manish M. Petkar,
  • Vaishnavi R. Sawant and
  • Bhalchandra M. Bhanage

Beilstein J. Org. Chem. 2025, 21, 1799–1807, doi:10.3762/bjoc.21.142

Graphical Abstract
  • activation; C–H annulation; iron metal catalysis; quinolines; styrene; Introduction Quinolines are one of the essential heteroaromatic motifs that play a crucial role across diverse scientific fields due to their wide range of applications. In contemporary medicine, quinoline derivatives frequently appear
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2025

Synthesis of chiral cyclohexane-linked bisimidazolines

  • Changmeng Xi,
  • Qingshan Sun and
  • Jiaxi Xu

Beilstein J. Org. Chem. 2025, 21, 1786–1790, doi:10.3762/bjoc.21.140

Graphical Abstract
  • )-2-amino-1,2-diphenylethyl]sulfonamides 2 in 61–74% yields. The sulfonamides 2 were then further reacted with (1S,2S)-cyclohexane-1,2-dicarboxylic acid (3) in the presence of EDCI (3-ethyl-1-(3-dimethylaminopropyl)carbodiimide hydrochloride) as a coupling reagent under the catalysis of DMAP (4
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025
Other Beilstein-Institut Open Science Activities