Search results

Search for "cation" in Full Text gives 726 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • or transform into a long-lived radical cation by substrate reduction, which are the fundamentals of photoredox catalysis (Figure 13a). Monomeric porphyrins and supramolecular porous frameworks composed of porphyrin building blocks, such as metal-organic frameworks (MOF) and covalent organic
  • and a photosensitizer, facilitating photoinduced electron transfer (PET) to form the active cation radical B, and intersystem crossing (ISC) for energy transfer to generate the triplet carbene C. Radical B then reacted with biradical C, producing the new radical D, which accepted an electron from the
  • porphyrin radical anion. Ultimately, protonation of intermediate E led to the final product. Formation of intermediates, such as enamine A and cation radical B, was confirmed using techniques like ESIMS, 1H NMR, and EPR, Stern–Volmer quenching experiments, respectively. All these mechanistic studies
PDF
Album
Review
Published 27 Nov 2024

Tunable full-color dual-state (solution and solid) emission of push–pull molecules containing the 1-pyrindane moiety

  • Anastasia I. Ershova,
  • Sergey V. Fedoseev,
  • Konstantin V. Lipin,
  • Mikhail Yu. Ievlev,
  • Oleg E. Nasakin and
  • Oleg V. Ershov

Beilstein J. Org. Chem. 2024, 20, 3016–3025, doi:10.3762/bjoc.20.251

Graphical Abstract
  • at 467 nm (excitation at 389 nm) was assigned to the formed 1iH+ cation. This band showed a blue shift of 19 nm relative to formic acid due to the lower polarity of acetic acid. At the same time, the second band was assigned to the molecular form 1i (Scheme 2) and observed at 662 nm (excitation at
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • the hydrogen atom from TBHP to form the tert-butylperoxy radical (stage D). Next, tert-butylperoxy radical adds to the enol double bond of 4-hydroxy-2(5H)-furanone 21 (step E). Further oxidation of the resulting C-centered radical I into cation II and the proton transfer results in the target product
  • radical–Ru(III)(OH) intermediate, which provides the cationic intermediate from phenol via electron transfer. The reaction of cation D with TBHP results in the mixed peroxide 87 [84]. However, this mechanism was later doubted based on the experimental data of [Rh2(cap)4]-catalyzed peroxidation of phenols
  • reaction mechanism was proposed as an anchored ionic type pathway, rather than the free radical one. First, the Togni reagent forms complex A with the dinuclear paddle-wheel copper nodes of Cu3(BTC)2. Complex A then adds to styrene 175 to form iodonium cation B, which is converted to intermediate D by
PDF
Album
Review
Published 18 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • the respective arylation product [50][51]. Lastly, arylation can occur through single-electron transfer (SET), where a cation radical obtained from aromatic hydrocarbons with high electron density yields the desired arylated product [52]. In this review article, we will provide a comprehensive
  • group with a less hindered portion is observed. The mechanism revealed the reaction undergoes the homolytic cleavage of the diaryliodonium salt to produce an iodoaryl radical cation, which further reacts with the amine to acquire the corresponding diaryl amines. Moreover, a similar reaction tried with a
PDF
Album
Review
Published 13 Nov 2024

Synthesis of tricarbonylated propargylamine and conversion to 2,5-disubstituted oxazole-4-carboxylates

  • Kento Iwai,
  • Akari Hikasa,
  • Kotaro Yoshioka,
  • Shinki Tani,
  • Kazuto Umezu and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2024, 20, 2827–2833, doi:10.3762/bjoc.20.238

Graphical Abstract
  • phenacyl group, yielding 9 without any detectable cyclization product (Scheme 4). This hydration process is thought to proceed via two paths. The reaction is initiated by the protonation of the ethynyl group to generate the vinyl cation intermediate 10. Product 9 is directly formed by the attack of a water
  • molecule on this cation, followed by tautomerism (path a). The intramolecular attack of an amide carbonyl on this cationic site in intermediate 10, leading to the formation of oxonium ion 11, is also possible (path b). After the addition of water, the formed hemiacetal 12 was hydrolyzed to give the
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • substitution has emerged as a new and robust approach to achieve formal allylic substitution using stabilized nucleophiles. The copper acetylide-bonded allylic cation with copper vinyl allenylidene species as its resonance structure is key for the process, which can achieve the outer-sphere attack of
  • acetylide-bonded allylic cation as the key intermediate is proposed (Scheme 6a). It is worth noting that the nucleophilic attack favors a less sterically hindered site. Therefore, disubstituted alkene moiety prefers γ-attack while trisubstituted alkene moiety is inclined to α-attack (Scheme 6b). Lin and He
  • yne-allylic cation intermediate, followed by an intramolecular cyclization. The disparity in reactivity could stem from the chelation between acyclic 1,3-dicarbonyl enolates and the copper catalyst, enhancing γ-position attack in an intramolecular manner. Conversely, Meldrum's acid's rigid cyclic
PDF
Album
Review
Published 31 Oct 2024

Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light

  • Francesco Gambuti,
  • Jacopo Pizzorno,
  • Chiara Lambruschini,
  • Renata Riva and
  • Lisa Moni

Beilstein J. Org. Chem. 2024, 20, 2722–2731, doi:10.3762/bjoc.20.230

Graphical Abstract
  • Scheme 6. Based on the results reported by Zeitler [28], several mechanisms are involved in the oxidation of N-Ph-THIQ. The most probable involves the photoexcitation of the EDA (Electron Donor-Acceptor) complex promoting an electron transfer from N-Ph-THIQ to BrCCl3 to afford the amine radical cation
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2024

Anion-dependent ion-pairing assemblies of triazatriangulenium cation that interferes with stacking structures

  • Yohei Haketa,
  • Takuma Matsuda and
  • Hiromitsu Maeda

Beilstein J. Org. Chem. 2024, 20, 2567–2576, doi:10.3762/bjoc.20.215

Graphical Abstract
  • Yohei Haketa Takuma Matsuda Hiromitsu Maeda Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525–8577, Japan 10.3762/bjoc.20.215 Abstract Ion pairs of N-(2,6-dimethylphenyl)-substituted triazatriangulenium (TATA+) cation with various counteranions were
  • synthesized to investigate the interactions for the bulky cation. Single-crystal X-ray analysis of the TATA+ ion pairs revealed solid-state ion-pairing assemblies without stacking at the cationic π-planes. The TATA+ cation showed counteranion-dependent assembly structures, with smaller counteranions located
  • at the top of TATA+ and bulkier counteranions displaced from the TATA+ plane to interact with the surrounding TATA+. Keywords: charged π-electronic systems; ion pairs; single-crystal X-ray analysis; solid-state assemblies; triazatriangulenium cation; Introduction Triangulenium cations [1][2] have
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • cation is formed by oxidation of the substrate at the anode. This radical cation is subsequently deprotonated to produce an allyl radical. The allyl radical is further oxidized to form the allyl cation, which is then attacked by the nucleophilic sulfonamide, leading to the formation of the desired C–N
  • , several structurally diverse aromatic acetals have been synthesized. Dehydroabietic and norcholanoic acid derivatives have been effectively modified using the developed protocol. The reaction is reported to involve the oxidation of the benzene core, followed by electron transfer to the radical cation, and
  • atomoxetine, metaxalone, and tadalafil. Mechanistically, thiophenol is oxidized at the anode to the corresponding radical by SET, then dimerizes into a disulfide, which is further oxidized into an intermediate cation radical, yielding a highly electrophilic species. Subsequently, a selective anisole attack
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • reactions limit the utility of this approach. Herein, we report an intramolecular photoredox cyclization of alkenes with β-lactams in the presence of an acridinium photocatalyst. The approach uses an intramolecular nucleophilic addition of the β-lactam nitrogen atom to the radical cation photogenerated in
  • functionalization of amides with alkenes under photoredox conditions. Another viable approach for amide functionalization through photoredox catalysis involves the nucleophilic addition, in the presence of base, of an amide to a radical cation obtained by oxidation of an unfunctionalized alkene moiety (Figure 1A
  • functionalization of amides with alkenes under oxidative conditions, the oxidation potential of the alkene plays a pivotal role in the oxidation to a radical cation through photoredox catalysis [26]. Alkenes that are less functionalized possess a higher oxidation potential, necessitating the use of potent
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • iodonium structures 1+, 2+, 3+, and 7+ were found to be constant (see Supporting Information File 1). The signals of the iodoxinium cation 4+ were overlapping with signals of the anion. However, the stability of 4+ (as well as of 2+) could be confirmed by 19F NMR measurements: no decomposition of the
  • 3Cl which resulted from crystallization of the respective cation with the abstracted chloride from the Ritter-type solvolysis of benzhydryl chloride [13]. The crystal structure of 5Br was also obtained directly from the halide-abstraction reaction (see Supporting Information File 1). These three facts
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Efficient one-step synthesis of diarylacetic acids by electrochemical direct carboxylation of diarylmethanol compounds in DMSO

  • Hisanori Senboku and
  • Mizuki Hayama

Beilstein J. Org. Chem. 2024, 20, 2392–2400, doi:10.3762/bjoc.20.203

Graphical Abstract
  • cation of intermediate B is thought to be the magnesium ion, and the magnesium salt of B must be dissolved in the solvent. Although other magnesium salts, such as magnesium carbonate and magnesium oxalate, are also generated during the electrolysis, the magnesium salt of B would be dissolved sufficiently
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • in the reaction with a diphenylpicrylhydrazyl (DPPH) radical, ABTS·+ radical cation, CUPRAC test, and inhibition process of superoxide radical anion formation by xanthine oxidase (NBT assay). The presence of a catechol fragment and thioether or thione groups determines the ability to neutralize
  • fragment favors the pronounced antiradical activity. The use of ABTS radical cation to assess the antioxidant capacity of compounds is one of the widely used methods which is based on the transfer of an electron from the studied molecules to the acceptor [67]. The obtained IC50 values for synthesized
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • formed in this process abstracts the γ-CH proton of the CF3-imine (136 → 141), facilitating its nucleophilic attack on the isatin cation (141 + 142 → 143), followed by elimination of the catalyst 138, which completes the cycle liberating 139 (Scheme 29). Overall, this methodology represents a convenient
  • ]-rearrangement of ene-aldimines 149, catalysed by the BINOL-derived chiral phosphoric acid (CPA) (R)-151 (Scheme 31) [46]. DFT computational analysis suggested that the reaction proceeds via a complex cascade that involves the fragmentation of ene-aldimine 149 to form an imine methylene cation, which in turn
PDF
Album
Review
Published 16 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • [D3]-formamide. The ability to deuterate at benzylic positions is particularly relevant as benzylic C–H bonds are common in biologically relevant chemotypes and moreover appear in approximately 25% of the top selling 200 pharmaceuticals [23]. Benzyl cation stability is a driver of metabolism at these
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Synthesis and reactivity of the di(9-anthryl)methyl radical

  • Tomohiko Nishiuchi,
  • Kazuma Takahashi,
  • Yuta Makihara and
  • Takashi Kubo

Beilstein J. Org. Chem. 2024, 20, 2254–2260, doi:10.3762/bjoc.20.193

Graphical Abstract
  • . Keywords: anthracene; cation; dimerization; radical; reactivity; Introduction Organic radicals have garnered significant attention in various research fields, including catalysis [1][2][3][4], chromophores [5][6][7][8], and as agents in dynamic nuclear polarization [9][10][11][12]. Recently, highly stable
  • O–O bond cleavage to give compounds 1 and 5 (Scheme 2). Owing to the high reactivity of the DAntM radical, cyclic voltammogram (CV) was measured by using the stable DAntM cation, prepared from compound 3 oxidized by antimony(V) chloride, which can be characterized by 1H, 13C NMR, and UV–vis
  • spectroscopy under ambient conditions. The CV of DAntM species showed a reversible wave at E1/2 = −0.20 V (V vs Fc/Fc+) (Figure 5a) [39]. This redox potential is close to that of TAntM radical and cation [17]. Additionally, at a scan rate of 0.1 V s−1, the current peak intensity on the anodic side (from
PDF
Album
Supp Info
Letter
Published 05 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • Chatani et al. reported that a carbon radical generated by the reaction of RB(OH)2 with Mn(acac)3, added to isocyano groups, is leading to intramolecular cyclization with an ortho-aryl group. The formed aryl radical is oxidized by Mn(acac)3 to convert into an aryl cation, which can be deprotonated to
PDF
Album
Perspective
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • substrates also increase yields. The ionic liquid [bmim][InCl4] can be used as a catalyst for the one-pot synthesis of pyrazoles 68 from 1,3-diketones, aldehydes, and hydrazines (Scheme 23) [101]. The synergistic effect between anion and cation favors high regioselectivity, and high yields can be observed in
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • formation of dimeric side products. Cyclic voltammetry analysis suggested an initial anodic single electron transfer (SET) to radical cation 5, cyclization and deprotonation. Subsequent SET oxidation in solution by 5 led to cation 7. Final deprotonation furnished aromatic cycle 4. In 2022, Zhang et al
  • the electrolysis was a four-electron oxidative process. Based on this study, the authors proposed the initial anodic oxidation of hydrazone 44 through the loss of two electrons and one proton to form cation 47. Subsequent nucleophilic addition of the azaarene led to new highly acidic cationic species
  • species to be oxidized, initial SET anodic oxidation of the hydrazone furnishes the highly electrophilic radical cation species D, which undergo nucleophilic addition of the second partner and deprotonation to produce hydrazinyl radical F (route a). Alternatively, if the partner possesses a lower
PDF
Album
Review
Published 14 Aug 2024

Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate

  • Masahiro Terada,
  • Zen Iwasaki,
  • Ryohei Yazaki,
  • Shigenobu Umemiya and
  • Jun Kikuchi

Beilstein J. Org. Chem. 2024, 20, 1973–1980, doi:10.3762/bjoc.20.173

Graphical Abstract
  • , initiating further radical reactions through the formation of radical cations B. Nucleophilic arylmethyl radicals C, which are generated from radical cations B by desilylation, undergo an addition reaction with 2-benzopyrylium intermediates A, giving rise to the corresponding radical cation. Catalytic cycle
  • II is completed through a SET from D, a reduced form of the photoredox catalyst 2-benzopyrylium intermediates A, to the generated radical cation, affording 1H-isochromene derivatives 3. The photoredox cycle is also completed with the regeneration of cations A through SET from D. The most distinctive
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2024

Regioselective alkylation of a versatile indazole: Electrophile scope and mechanistic insights from density functional theory calculations

  • Pengcheng Lu,
  • Luis Juarez,
  • Paul A. Wiget,
  • Weihe Zhang,
  • Krishnan Raman and
  • Pravin L. Kotian

Beilstein J. Org. Chem. 2024, 20, 1940–1954, doi:10.3762/bjoc.20.170

Graphical Abstract
  • similar to 6. They observed high N1-selectivity using NaH in THF with pentyl bromide and electron-deficient indazoles, postulating a coordination of the indazole N2-atom and an electron-rich oxygen atom in a C-3 substituent with the Na+ cation from NaH. Under anhydrous conditions the yields ranged from 44
  • -3 as a bidentate ligand to the Na+ cation from NaH. The tight ion pair would direct alkylation under conditions A to N1. As this and other postulations exist, we explored the possible mechanisms of each reaction conditions computationally. All calculations were performed in implicit THF at the
  • subsequently set to 0 kcal/mol leading to the energy diagram in Figure 5. Two TSs leading to each product were found, all four of which utilized a coordinating Cs+ cation. The N1-s-cis and N1-s-trans TSs were the lowest in energy (27.5 kcal/mol and 29.1 kcal/mol, respectively), leading to two conformations of
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2024

Novel oxidative routes to N-arylpyridoindazolium salts

  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2024, 20, 1906–1913, doi:10.3762/bjoc.20.166

Graphical Abstract
  • amount (5%) of the N,N’-diaryldihydrophenazine radical cation that is the byproduct corresponding to the intermolecular oxidative C–N coupling of the diarylamine A1 was detected in the reaction mixture. This emphasizes that the both processes are of the same nature and proceed through the same
  • intermediate (i.e., the diarylamines’ radical cation) and indicates the dominance of the intramolecular cyclization over the intermolecular C–N coupling process. Oxidation of diarylamines in the presence of an excess of trifluoroacetic acid gave no targeted pyridoindazolium salts, whereas the amount of
  • A1, similarly to the chemical oxidation. The radical cation of dihydrophenazine formed was isolated and studied using ESR and HRMS methods. The ESR spectrum (see Supporting Information File 1) was typical for this type of compounds: a characteristic quintet due to hyperfine splitting on two
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • cations that offer unique reactivities as intermediates in various bond-formation processes. Such intermediates can potentially take part in both radical and ionic bond formation; however, the mechanisms involved are complicated and not fully understood. Herein, we report electrochemical radical cation
  • aza-Wacker cyclizations under acidic conditions, which are expected to proceed via radical cations generated by single-electron oxidation of alkenes. Keywords: alkene; aza-Wacker cyclization; electrochemistry; radical cation; sulfonamide; Introduction Activating bench-stable substrates is the first
  • representative radical cation precursors that are widely used to realize the formation of unique bonds. The respective radical cations are trapped by various nucleophiles under radical and/or ion control, where kinetic and/or thermodynamic effects are expected to be dominant. Typical examples that clearly show
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • . prepared the Brønsted acid ionic liquid 7, based on the 1-(butyl-4-sulfonic)-3-methylimidazolium cation, (Scheme 4) and tested it in the model reaction reported in Scheme 2 (R = t-Bu), obtaining a 71% yield using 20 mol % of catalyst in ethanol as the solvent under reflux conditions. The yield could be
PDF
Album
Review
Published 01 Aug 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • trap the phenoxonium cation formed in the oxidation as an acetal, that later were hydrolysed to the quinone. Formation of hydrogen gas as the cathode reaction caused challenges in the flow cell and were overcome by recycling the reaction mixture through the cell at increased flow rate several times
  • chrysenols nor phenanthrols, suggesting a chemically irreversible reaction of the radical cation intermediate with the ensuing product no longer being electrochemically active within the potential window of the CV scans. However, a reduction peak was observed for compound 1b (see Figure S2 in Supporting
  • radical and a naphthyloxy cation leading to the formation of 5. Our CV studies exhibit oxidation peaks, which seem in line with what to expect for an electrochemical oxidation of PAPs. Through the cyclic voltammetry experiments for the investigation of the redox behavior of the PAPs, an estimation of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024
Other Beilstein-Institut Open Science Activities