Search results

Search for "reduction" in Full Text gives 1570 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Understanding X-ray-induced isomerisation in photoswitchable surfactant assemblies

  • Beatrice E. Jones,
  • Camille Blayo,
  • Jake L. Greenfield,
  • Matthew J. Fuchter,
  • Nathan Cowieson and
  • Rachel C. Evans

Beilstein J. Org. Chem. 2024, 20, 2005–2015, doi:10.3762/bjoc.20.176

Graphical Abstract
  • , Supporting Information File 1). Fits to the data show a return to the cylindrical micelle morphology present in the E isomer, but with smaller dimensions of 98 Å length (cf. 136 Å in the E isomer), and radii of 13 and 15 Å in the polar and equatorial directions (Table 1). A similar reduction in micelle size
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2024

Radical reactivity of antiaromatic Ni(II) norcorroles with azo radical initiators

  • Siham Asyiqin Shafie,
  • Ryo Nozawa,
  • Hideaki Takano and
  • Hiroshi Shinokubo

Beilstein J. Org. Chem. 2024, 20, 1967–1972, doi:10.3762/bjoc.20.172

Graphical Abstract
  • the electrophile [16][17][18]. In addition, C–C double bonds of the norcorrole skeleton outside the π-delocalization pathway exhibit a reactivity similar to an alkene to afford hydrogenated norcorroles by hydrogenation [19] or reduction with hydrazine [20] and [3 + 2]-cycloadducts with 1,3-dipoles [21
  • CH2Cl2 were examined using cyclic voltammetry (Figure 4). Macrocycle 2a exhibited one reversible oxidation wave at 0.44 V and two reversible reduction waves at −0.85 V and −1.14 V. The electrochemical HOMO–LUMO gap of 2a is 1.29 V, which is larger than that of 1a (1.08 V) [2]. DFT calculations We next
PDF
Album
Supp Info
Letter
Published 12 Aug 2024

1,2-Difluoroethylene (HFO-1132): synthesis and chemistry

  • Liubov V. Sokolenko,
  • Taras M. Sokolenko and
  • Yurii L. Yagupolskii

Beilstein J. Org. Chem. 2024, 20, 1955–1966, doi:10.3762/bjoc.20.171

Graphical Abstract
  • -difluoroethylene was based on 1,2-dichloro-1,2-difluoroethane (HCFC-132) [48][49][50][51][52], prepared from 1,1,2,2-tetrachloro-1,2-difluoroethane (CFC-112) by reduction using lithium aluminum hydride [48][49][50][51] or photoreduction (Scheme 2) [51]. The resulting HCFC-132 reacted with zinc [47][49][52] or
PDF
Album
Review
Published 12 Aug 2024

Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications

  • Matteo Gasparetto,
  • Balázs Fődi and
  • Gellért Sipos

Beilstein J. Org. Chem. 2024, 20, 1922–1932, doi:10.3762/bjoc.20.168

Graphical Abstract
  • heteroaromatic halides. The reaction sequence utilizes a photochemically enhanced Negishi cross-coupling as a key step, followed by oximation and reduction. The prepared amino esters were validated for on-DNA reactivity via a reverse amidation–hydrolysis–reverse amidation protocol. Keywords: amino acids; DEL
  • that α-heteroaryl acetates accessed through Negishi coupling can be used as key intermediates towards NCAs (Scheme 1c). Indeed, oximation of these motifs followed by reduction gave access to the desired NCAs. Results and Discussion Negishi cross-coupling step The Negishi reaction provides convenient
  • amino group by reduction. We reasoned that increasing the sp2 fraction and the rigidity of the whole structure will lead to increased stability of these derivatives. The first exploratory attempts demonstrated the easy preparation and the high bench stability of the oxime derivatives, therefore we opted
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Novel oxidative routes to N-arylpyridoindazolium salts

  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2024, 20, 1906–1913, doi:10.3762/bjoc.20.166

Graphical Abstract
  • −1.2V to −1.3 V region (Table 1). In case of S2, the second reduction peak corresponds to the reduction of the carbonyl group. Thus, the electrochemical window for the new salts exceeds 3.5 V; that makes their molten forms perspective for application as ionic liquids. As follows from Table 1, oxidation
  • of the starting amines A1–A3 occurs at ca. 1–1.1 V vs Ag/AgCl, KCl(sat.). The electrochemical study of PIFA reduction showed a broad irreversible peak with the onset potential value of +0.93 V (vs Ag/AgCl, KCl(sat.)). Thus, it is sufficiently strong to perform oxidation of diarylamines A1–A3, as it
  • direction of the potential sweep is changed after passing the first reduction peak of salt S2, the new peak appears at the potential of 0.89 V that completely coincides with the first oxidation peak of the amine precursor. The CV curve for the diarylamine, in its turn, exhibited (in the reverse scan after
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • step to driving bond formation and/or cleavage. Therefore, the discovery of new modes for activation leads to reaction advancements. Electrochemical [1][2][3][4][5] and photochemical [6][7][8][9][10] reactions that induce single-electron reduction and oxidation are widely used in modern synthetic
  • organic chemistry [11][12][13][14][15]. Single-electron oxidation of bench-stable substrates can generate radical cations that offer unique reactivities as intermediates for various bond-formation processes (also true for reduction). Because the reactivities of radicals and ions are fundamentally
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

2-Heteroarylethylamines in medicinal chemistry: a review of 2-phenethylamine satellite chemical space

  • Carlos Nieto,
  • Alejandro Manchado,
  • Ángel García-González,
  • David Díez and
  • Narciso M. Garrido

Beilstein J. Org. Chem. 2024, 20, 1880–1893, doi:10.3762/bjoc.20.163

Graphical Abstract
  • ). Later, the authors expanded the histaprodifen family by SAR exploration of small substituents in the phenyl rings (compounds 67–78, Scheme 11) [59][60]. While pEC50 values varied very subtle, a histamine relative potency screening revealed a general reduction in potency. Following the same assay
  • -ring bioisostere, but as carboxylic acid one, Schwarz et al. [79] developed tetrazole-based pregabalin bioisosteres 113–118 (Scheme 18). The target protein α2-δ is involved in neurotransmitters release reduction, as a model of anxiety and neuropathic pain. In general, submicromolar affinities were
PDF
Album
Review
Published 02 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • incorporated into the second isocyanides. The utility of this protocol was evaluated by conducting a gram-scale synthesis using 10 mmol of all precursors and there was no significant reduction in the yield of products. Al-Tel et al. [62] developed a synthetic strategy where a Michael acceptor (a conjugated
PDF
Album
Review
Published 01 Aug 2024

A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts

  • Ivana Weisheitelová,
  • Radek Cibulka,
  • Marek Sikorski and
  • Tetiana Pavlovska

Beilstein J. Org. Chem. 2024, 20, 1831–1838, doi:10.3762/bjoc.20.161

Graphical Abstract
  • , value for Ar = Ph] [14][15][16][17][18] (Figure 1B). 5-Aryldeazaalloxazines 2 have been found to be even more powerful reductants than 1 due to their more negative ground-state reduction potential by ca. 300 mV. Moreover, 2 exhibits higher photostability than 1. Consequently, 5-aryldeazaalloxazine 2f
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Oxidative fluorination with Selectfluor: A convenient procedure for preparing hypervalent iodine(V) fluorides

  • Samuel M. G. Dearman,
  • Xiang Li,
  • Yang Li,
  • Kuldip Singh and
  • Alison M. Stuart

Beilstein J. Org. Chem. 2024, 20, 1785–1793, doi:10.3762/bjoc.20.157

Graphical Abstract
  • major products were phenyliodane 23, presumably a result of ligand exchange and reduction, and iodoalcohol 18. Different solvents, temperatures and activators were investigated and the results are shown in Table S3 in Supporting Information File 1. Fluorobenzene was only ever observed in trace amounts
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2024

Synthesis and characterization of 1,2,3,4-naphthalene and anthracene diimides

  • Adam D. Bass,
  • Daniela Castellanos,
  • Xavier A. Calicdan and
  • Dennis D. Cao

Beilstein J. Org. Chem. 2024, 20, 1767–1772, doi:10.3762/bjoc.20.155

Graphical Abstract
  • undergo reversible chemical reduction processes, as determined by cyclic voltammetry in CH2Cl2 solvent (Figure 4). There are two factors at play. The imide substitution is impactful as the N-phenyl derivatives are roughly by 100 mV easier to reduce than the N-hexyl analogs. The anthracene scaffold also
  • lends itself to a more facile reduction process, with an approximately 150 mV shift of the event toward more positive potentials for 8-R vs 7-R. When compared to other structural isomers, aromatic diimides with 5-membered cyclic imides tend to be slightly harder to reduce than those with 6-membered
  • title compounds indicates that they are optically and electronically similar to previously reported naphthalene and anthracene diimides, absorbing/emitting light in the visible region and readily undergoing one-electron-reduction processes. As such, this work opens the possibility of incorporating the
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2024

Harnessing unprotected deactivated amines and arylglyoxals in the Ugi reaction for the synthesis of fused complex nitrogen heterocycles

  • Javier Gómez-Ayuso,
  • Pablo Pertejo,
  • Tomás Hermosilla,
  • Israel Carreira-Barral,
  • Roberto Quesada and
  • María García-Valverde

Beilstein J. Org. Chem. 2024, 20, 1758–1766, doi:10.3762/bjoc.20.154

Graphical Abstract
  • with a reduced reactivity in the synthesis of 3H-benzo[e][1,4]diazepin-5-ones, heterocycles previously synthesized by our research group through Ugi/Staudinger/aza-Wittig and Ugi/reduction/cyclization sequences, using 2-azidobenzoic [20] and 2-nitrobenzoic [21] acids, respectively. The first
  • chromatography column, while the more eco-friendly second strategy needs an additional stage for the reduction of the nitro group on the Ugi adduct. In order to find a more efficient synthesis, we thought that the second nitrogen in the diazepine nucleus could be incorporated without the need of surrogates or
  • reaction took place with a α,3-like relative configuration on the major diastereomer, similar to that obtained for the Ugi/Staudinger/aza-Wittig sequence and complementary to that observed for the Ugi/reduction/cyclization sequence (see Supporting Information File 1, Figure S2). With the aim of building
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • showed irreversible oxidation processes within the oxidative potential window, scaling from 0.79 V to 1.10 V vs Fe/Fe+. The oxidation peak potential difference between isomers of chrysenols 3 and phenanthrols 6 was 20–310 mV. No reduction peaks were observed in the reverse scan in solutions of neither
  • chrysenols nor phenanthrols, suggesting a chemically irreversible reaction of the radical cation intermediate with the ensuing product no longer being electrochemically active within the potential window of the CV scans. However, a reduction peak was observed for compound 1b (see Figure S2 in Supporting
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • protecting group yielded the corresponding hydroxyalkynyl derivative 4. Subsequent Lindlar reduction resulted in the (Z)-alkene and a chemoselective tosylation of the primary alcohol led to the formation of tosylate 5. This intermediate underwent a stereospecific 4-exo cyclization upon exposure to iodine
  • epoxide was then opened by treatment with sodium azide and boric acid, yielding the azide derivative 146 in 87% from estrone. A subsequent reduction of the azide with LiAlH4 provided the aminoalcohol derivative 147 in 64% yield. Then, a chloroacetamido moiety was formed at the amino function in 51% yield
PDF
Album
Review
Published 24 Jul 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • , and subsequent reduction of the exomethylene at C11–C18 catalyzed by BscH yield brassicicene O (12). Renata and co-workers successfully accomplished the chemoenzymatic total syntheses of cotylenol (1) and nine brassicicenes (Scheme 3) [19]. In the cyclization phase, a suitably functionalized 5/8/5
  • evolution using site-saturation mutagenesis targeting the putative active sites L110 and Y112, led to the variant MoBsc9 Y112M, which substantially improved the enzymatic conversion into 22, achieving an isolated yield of up to 67%. Diastereoselective reduction of the C8 ketone was then achieved using the
  • protocol of Nakada and co-workers [27], enabling the chemo-enzymatic total synthesis of cotylenol (1). Similarly, diastereoselective reduction of the C8 ketone in 20 yielded the biosynthetic intermediate 8 for brassicicenes. Although substrate 8 has a different oxidation state at C8 and lacks the C9
PDF
Album
Review
Published 23 Jul 2024

Generation of multimillion chemical space based on the parallel Groebke–Blackburn–Bienaymé reaction

  • Evgen V. Govor,
  • Vasyl Naumchyk,
  • Ihor Nestorak,
  • Dmytro S. Radchenko,
  • Dmytro Dudenko,
  • Yurii S. Moroz,
  • Olexiy D. Kachkovsky and
  • Oleksandr O. Grygorenko

Beilstein J. Org. Chem. 2024, 20, 1604–1613, doi:10.3762/bjoc.20.143

Graphical Abstract
  • known compounds, the generated GBB chemical space is unique as compared to the available compound collections. This fact is even more apparent from the t-distributed stochastic neighbour embedding (t-SNE) analysis, a technique widely used for the dimension reduction in data visualization [47]. Due to
  • the relatively high computational costs of this method, we randomly selected 50,000 compounds to represent each database. The dimension reduction algorithm uses molecular features as the starting inputs to generate a few coordinates (in this case, t-SNE1 and t-SNE2) reflecting the probability of the
  • (due to the large size of the dataset, a preliminary clusterization was performed to achieve ca. 5-fold size reduction); C) ZINC15 drug-like compounds, and D) enamine’s stock screening collection. Average T values are shown by dotted lines. t-Distributed stochastic neighbor embedding (t-SNE
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Supramolecular assemblies of amphiphilic donor–acceptor Stenhouse adducts as macroscopic soft scaffolds

  • Ka-Lung Hung,
  • Leong-Hung Cheung,
  • Yikun Ren,
  • Ming-Hin Chau,
  • Yan-Yi Lam,
  • Takashi Kajitani and
  • Franco King-Chi Leung

Beilstein J. Org. Chem. 2024, 20, 1590–1603, doi:10.3762/bjoc.20.142

Graphical Abstract
  • nitrogen atmosphere, followed by reduction of the indole motif in compound 1n to indoline in 2n. The ester group in compound 2n was deprotected under basic conditions to give compound 3n (Scheme 2). DAn with different chain lengths of the alkyl linker were synthesized through an aza-Piancatalli
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor

  • Koichi Mitsudo,
  • Atsushi Osaki,
  • Haruka Inoue,
  • Eisuke Sato,
  • Naoki Shida,
  • Mahito Atobe and
  • Seiji Suga

Beilstein J. Org. Chem. 2024, 20, 1560–1571, doi:10.3762/bjoc.20.139

Graphical Abstract
  • cyanoarenes, nitroarenes, quinolines, and pyridines using a proton-exchange membrane (PEM) reactor was developed. Cyanoarenes were then reduced to the corresponding benzylamines at room temperature in the presence of ethyl phosphate. The reduction of nitroarenes proceeded at room temperature, and a variety of
  • anilines were obtained. The quinoline reduction was efficiently promoted by adding a catalytic amount of p-toluenesulfonic acid (PTSA) or pyridinium p-toluenesulfonate (PPTS). Pyridine was also reduced to piperidine in the presence of PTSA. Keywords: cyanoarene; nitroarene; PEM reactor; pyridine
  • ; quinoline; Introduction Nitrogen-containing molecules are important bioactive compounds and intermediates in chemical synthesis. Therefore, the chemical transformations of nitrogen-containing compounds have been widely studied in the field of organic synthesis [1][2][3][4]. For instance, the reduction of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • ]. Photoexcitation of the Ir(III) catalyst I with blue light resulted in the photoexcited Ir(III)* catalyst, which was capable of performing a single-electron reduction on N-acyloxyphthalimide, promoting decarboxylation, releasing CO2, a methyl radical, anionic phthalimide and an Ir(IV) species. The resultant methyl
  • , generated from reduction of tert-butyl benzoperoxoate (TBPB), selective benzylic HAT afforded the benzylic radical. Subsequent oxidation by Ir(IV) generated the benzylic cation that could be trapped by fluoride to afford the benzyl fluorides. An impressive scope with broad functional group tolerance
PDF
Album
Review
Published 10 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • using acetonitrile as the solvent frequently led to the observation of Cu deposition at cathode (Table 1, entry 4). We reasoned that DMF could coordinate to the copper center, acting as a ligand to prevent copper from cathode reduction. Constant current electrolysis is also applicable to the reaction
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain

  • Changjun Xiang,
  • Shunyu Yao,
  • Ruoyu Wang and
  • Lihan Zhang

Beilstein J. Org. Chem. 2024, 20, 1476–1485, doi:10.3762/bjoc.20.131

Graphical Abstract
  • PKSs. (b) Stereocontrol of KR domains. KRs can be classified into A-type (β-ʟ-hydroxy), B-type (β-ᴅ-hydroxy), and C-type (reduction-incompetent; β-keto) depending on the product structure and into subtypes 1 (non-epimerizing, α-ᴅ-substitution product) and 2 (epimerizing, α-ʟ-substitution product). (c
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • reduction. This electrophilic aromatic substitution usually needs harsh reaction conditions, tedious synthetic procedures and sometimes encounters the trouble of separating positional isomers caused by orientation or steric effects of the pre-existed amino group on the aryl moiety. Nevertheless, anilines
  • are not always readily accessible. Typically, the preparation methods involve SNAr reactions with N-centered nucleophiles [5], nitroarene reduction [6] and transition metal (e.g., Pd, Cu)-catalyzed C–N cross coupling of aryl halides, aryl sulfonates or arylboronic acid reagents with ammonia or NH
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • simplified form, focuses on the base-induced disproportionation of two molecules of a non-enolizable aromatic and/or aliphatic aldehyde (without an α-hydrogen atom). These aldehydes undergo in the presence of concentrated alkali or other strong bases, a simultaneous oxidation and reduction sequence of two
  • flavoring agents, it plays a vital role for the development of unique sensory compounds [56][57]. The Cannizzaro disproportionation has also been observed in several electrochemical transformations [58] and during the electrocatalytic reduction of carbon dioxide [59]. A recent study by Liu et al. witnessed
  • where other methods of oxidation or reduction might be challenging or impractical. The present discussion focuses on some recent synthetic advances and their application in biologically active compounds. Lewis acid-catalyzed intramolecular Cannizzaro reaction Wang et al. [73] depicted a highly
PDF
Album
Review
Published 19 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • , the addition of the benzoyl radical to azobenzene results in the generation of a nitrogen-centered radical. This radical is then subjected to reduction by the reduced photocatalyst, producing the nitrogen-centered anion intermediate. Ultimately, the protonation of this anion gives rise to the desired
  • prefunctionalized alcohols that are used under visible-light photoredox conditions to generate alkyl radicals by homolysis of C–O bonds. Thiocarbonyl: In 2014, Ollivier and co-workers [43] demonstrated visible-light-mediated iridium-catalyzed reduction of thiocarbonyl derivatives derived from alcohols. The
  • final reductive elimination gives the desired alkene and Ni(I). The two catalytic cycles are finally completed by single-electron reduction of [Ni(I)] by [Ir(II)], which regenerates [Ni(0)] and ground-state [Ir(III)]. Cyclic oxalates readily form the corresponding alkyl radicals under iridium
PDF
Album
Review
Published 14 Jun 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • conditions. The key to success is the use of 1,3-dicyanobenzene as a redox mediator and visible-light irradiation, which effectively suppresses the formation of simple reduction, i.e., hydrodehalogenation, products to afford the desired products in good to high yields. Mechanistic investigations proposed
  • beneficial features, such as higher chemical stability and wide commercial availability, compared with other precursors, e.g., diazonium salts [11]. Classical approaches toward aryl radical species from the corresponding halides would involve halogen abstraction or single-electron reduction processes using
  • ][34][35][36]. In this context, the electrochemical single-electron reduction of aryl iodides, bromides, and activated (bearing at least one electron-withdrawing group) aryl chlorides has been demonstrated as a useful method to generate aryl radical species under mild reaction conditions [37]. Although
PDF
Album
Supp Info
Letter
Published 10 Jun 2024
Other Beilstein-Institut Open Science Activities