Search results

Search for "mechanism" in Full Text gives 1819 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • for the efficient monofluorination of 4- and 2-alkylpyridines (Figure 4 – conditions [A]) [36]. The transformation relied on the polarisation of the heterobenzylic C–H bond, via the intermediate formation of an N-sulphonylpyridinium salt, to promote deprotonation. Following a polar mechanism with
  • excess NFSI, the heterobenzyl fluoride is obtained. In the case of product 3, the authors suggested that the absence of radical clock rearrangement products supported a polar mechanism. Conveniently, when both benzylic and heterobenzylic C–H bonds were present in a substrate, the reaction was selective
  • selective for primary benzylic fluorination (11) and secondary benzylic fluorination (12) in the presence of tertiary benzylic sites. Although no mechanism has been proposed, the authors concluded it likely proceeded via a radical pathway [23]. In 2017, Baxter and co-workers introduced a silver-catalysed
PDF
Album
Review
Published 10 Jul 2024

Primary amine-catalyzed enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones

  • Pooja Goyal,
  • Akhil K. Dubey,
  • Raghunath Chowdhury and
  • Amey Wadawale

Beilstein J. Org. Chem. 2024, 20, 1518–1526, doi:10.3762/bjoc.20.136

Graphical Abstract
  • measured by HPLC analysis using a stationary phase chiral column. Synthesis of 3aa on preparative scale. Proposed reaction mechanism. Optimization of reaction conditions.a Supporting Information Supporting Information File 2: Additional optimization studies, characterization data of compounds 3aa–na and
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • insights we also carried out our standard reaction (Table 1, entry 14) in the presence of well-established radical traps like TEMPO, di-tert-butylhydroxytoluene (BHT), or 1,1-diphenylethene (DPE). In neither case any influence on the yield was observed, thus ruling out a mechanism involving radical species
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Photoswitchable glycoligands targeting Pseudomonas aeruginosa LecA

  • Yu Fan,
  • Ahmed El Rhaz,
  • Stéphane Maisonneuve,
  • Emilie Gillon,
  • Maha Fatthalla,
  • Franck Le Bideau,
  • Guillaume Laurent,
  • Samir Messaoudi,
  • Anne Imberty and
  • Juan Xie

Beilstein J. Org. Chem. 2024, 20, 1486–1496, doi:10.3762/bjoc.20.132

Graphical Abstract
  • rather similar Kd values. In order to rationalize this difference in binding mechanism, molecular models were obtained for selected low-energy conformations of E- and Z-isomers of a “model” scaffold of the para-azobenzene derivative in the binding site of LecA (Figure 5), by simple superpositioning of
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain

  • Changjun Xiang,
  • Shunyu Yao,
  • Ruoyu Wang and
  • Lihan Zhang

Beilstein J. Org. Chem. 2024, 20, 1476–1485, doi:10.3762/bjoc.20.131

Graphical Abstract
  • , based on the syn-elimination mechanism, the ʟ-α-methyl,ʟ-β-hydroxy substrate produced by A2-type KR can also result in a trans (E) double bond [18][22], and some DH domains are reported to have epimerase activity on the α-substitution [23]. Thus, the stereochemical outcomes of KRs in γ- and δ-modules
  • either A2- or B2-KRs, but are likely to contain mutations in NADPH binding site [31]. Sequence logo analysis of KRC from γ- and δ-modules In the actinobacterial γ- and δ-modules, the stereochemical outcome of a KR is obscured by further dehydration catalyzed by DH. The dehydration mechanism by DH has
  • been investigated in several DH domains, which all follow the syn-elimination mechanism [5][21][33]. Based on the product configuration, we classified DHs into two types, E-type DHs (trans-double bond) and Z-type DHs (cis-double bond) and analyzed sequence logos of the DH-associated KRs. The sequence
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner–Meerwein rearrangement

  • Ziya Dağalan,
  • Muhammed Hanifi Çelikoğlu,
  • Saffet Çelik,
  • Ramazan Koçak and
  • Bilal Nişancı

Beilstein J. Org. Chem. 2024, 20, 1462–1467, doi:10.3762/bjoc.20.129

Graphical Abstract
  • compounds 4a–j were also obtained in very good yields (60–98%, Scheme 2). Since the reaction mechanism proceeding with a Wagner–Meerwein rearrangement does not cause racemization or a diastereomeric mixture and preserves the initial enantiomeric excess in the camphene's fluoroalkoxy derivatives (Scheme 4
  • mmol), scale-up experiments were conducted. The isolated yield of 4b (1.26 g, 90% yield) is quite satisfactory, as can be seen from Scheme 3. For the fluoroalkoxylation, we propose the mechanism given in Scheme 4. In this mechanism, first the double bond in (+)-camphene attacks the fluorine in the
  • alcohol in 2 mL of CH3CN at 90 °C for 2 h. Isolated yields. Scale-up experiments. Reaction conditions: (+)-Camphene (1b) (1.0 g, 7.34 mmol), selectfluor (3.12 g, 8.81 mmol), MeOH (17.62 mmol), CH3CN (20 mL), 90 °C, 2 h. Proposed mechanism for fluoroalkoxylation of (+)-camphene by Wagner–Meerwein
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Synthesis of 4-functionalized pyrazoles via oxidative thio- or selenocyanation mediated by PhICl2 and NH4SCN/KSeCN

  • Jialiang Wu,
  • Haofeng Shi,
  • Xuemin Li,
  • Jiaxin He,
  • Chen Zhang,
  • Fengxia Sun and
  • Yunfei Du

Beilstein J. Org. Chem. 2024, 20, 1453–1461, doi:10.3762/bjoc.20.128

Graphical Abstract
  • by treatment with CH3MgBr in THF [56] (Scheme 4). Based on the previous reports [54][57][58][59], a possible mechanism of this selenocyanation reaction was proposed (Scheme 5). First, the reaction of PhICl2 with KSeCN produces selenocyanogen chloride (Cl–SeCN), which further reacts with selenocyanate
  • 3a and their derivatization. Plausible reaction mechanism. Optimization of oxidative thiocyanation of pyrazole.a Supporting Information Supporting Information File 28: Synthetic details and compound characterization data. Funding We acknowledge the National Key Research and Development Program of
PDF
Album
Supp Info
Letter
Published 28 Jun 2024

Rapid construction of tricyclic tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine via isocyanide-based multicomponent reaction

  • Xiu-Yu Chen,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2024, 20, 1436–1443, doi:10.3762/bjoc.20.126

Graphical Abstract
  • -position of the o-methoxyphenyl group. Therefore, compound 6g has the same relative configuration to that of the above mentioned product 3a, which also indicated that this reaction has same steric controlling effect. A plausible reaction mechanism is proposed in Scheme 1 to explain the formation of the
  • . Molecular structure of compound 4a. Molecular structure of compound 6g. Proposed reaction mechanism. Optimizing reaction conditionsa. The synthesis of the tricyclic compounds 4a–ta. The synthesis of the tricyclic compounds 6a–ka. Supporting Information The crystallographic data of the compounds 4a (CCDC
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2024

Synthesis of cyclic β-1,6-oligosaccharides from glucosamine monomers by electrochemical polyglycosylation

  • Md Azadur Rahman,
  • Hirofumi Endo,
  • Takashi Yamamoto,
  • Shoma Okushiba,
  • Norihiko Sasaki and
  • Toshiki Nokami

Beilstein J. Org. Chem. 2024, 20, 1421–1427, doi:10.3762/bjoc.20.124

Graphical Abstract
  • product of monomer 6. The proposed mechanism is shown in Scheme 2. Anodic oxidation of thioglycoside 6 generated radical cation 11, which was converted to glycosyl triflate 12. 1,6-Anhydrosugar 7 was produced via 4C1-to-1C4 conformational change of the pyran ring to generate cation intermediate 13
  • rate: 7.5 mL/min, recycle numbers: 3) to obtain pure cyclic oligosaccharide 16 (0.125 mmol, 79.7 mg, 62%). Preparation of cyclic oligoglucosamines a) via intramolecular glycosylation and b) via polyglycosylation and intramolecular glycosylation. Proposed reaction mechanism of the formation of 1,6
  • -anhydrosugar 7. Electrochemical polyglycosylation of monomer 14 with a 2,3-oxazolidinone protecting group. Proposed reaction mechanism of the formation of cyclic trisaccharide 19a. Influence of the functional group in position C-2 on the formation of the cyclic product. Electrochemical polyglycosylation of
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • content of the reaction environment during the time. Then, to explain the related formation of 5 and 6, we hypothesized a plausible reaction mechanism in which iron is involved in two concomitant catalytic cycles (Scheme 4). Initially, FeCl3 forms an acid–base complex with one of the alkoxy groups of 4
  • suitably N-3-functionalized (thio)hydantoins 4a–r. aDCM was utilized as solvent with isothiocyanates 3a–f, while bEtOH was utilized with isocyanates 3g,h. Substrate scope of the iron(III)-catalyzed synthesis of functionalized heterocyclic N,O-aminals 5a–r and hemiaminals 6a–p. Proposed mechanism for the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • % enantioselectivity. They employed a double asymmetric induction with (+)/(−)-menthol (12), and CuX2 bis(oxazoline) catalyst where the corresponding chiral mandelate ester 13 was obtained in 81% yield and high selectivity (90% de) (Scheme 6). The proposed mechanism of the reaction is depicted below. Hong et al
  • (R1 and R2) were obtained in good to excellent yields witnessing the feasibility of the methodology (Scheme 25). The mechanism depicting the proposed strategy for the Cannizzaro-aldol transformation involves an initial Cannizzaro reaction between paraformaldehyde and the isatin substrate, followed by
  • aspects. The application of this highly valuable reaction to the functionalization of bioactive molecules with improved synthetic conditions, will broaden its use in the future. Types and mechanism of the Cannizzaro reaction. Various approaches of the Cannizzaro reaction. Representative molecules
PDF
Album
Review
Published 19 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • facilitate important chemical reactions. Thus, we will focus on the reports detailing organic transformations that proceed via visible-light-induced deoxygenative generation of acyl radicals from carboxylic acids and acid anhydrides that have appeared since 2019. Review General mechanism of photoredox
  • catalysis In recent times, visible-light-mediated photoredox chemistry has evolved as a unique tool for various organic transformations. In contrast to traditional catalysis, the photochemical process uses an electron or energy transfer mechanism to form reactive intermediates. Typically, a photocatalyst is
  • conventional metal hydrides, such as tin or silicon hydrides. The reaction mechanism is interesting since first, a Lewis acid–base adduct is generated by interaction of Et3N with a boron atom of bis(catecholato)diboron (B2cat2, 19). As a result, one of the catecholate ligands experiences an increase in
PDF
Album
Review
Published 14 Jun 2024

Rhodium-catalyzed homo-coupling reaction of aryl Grignard reagents and its application for the synthesis of an integrin inhibitor

  • Kazuyuki Sato,
  • Satoki Teranishi,
  • Atsushi Sakaue,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai,
  • Hiroyuki Takeda,
  • Tatsuo Kinashi and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 1341–1347, doi:10.3762/bjoc.20.118

Graphical Abstract
  • previous results [21][22]. Consequently, we propose the reaction mechanism as shown in Figure 2. In the initial step, the Rh catalyst reacts with the Grignard reagent 4 to give the Rh(I)–aryl complex 7. Oxidative addition of 1,2-dibromoethane onto complex 7 then generates Rh(III)–aryl complex 8 along with
  • . Conditions: a) The reaction was carried out at rt for 1–3 h without Mg. b) The side product 6h by SNAr reaction onto 3h was obtained in 8%. Tentative reaction mechanism. Ullmann and Ullmann-type homo-coupling reactions. Rh-catalyzed homo-coupling reactions. Rh-catalyzed homo-coupling reaction by using
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2024

Synthesis of 1,2,3-triazoles containing an allomaltol moiety from substituted pyrano[2,3-d]isoxazolones via base-promoted Boulton–Katritzky rearrangement

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 1334–1340, doi:10.3762/bjoc.20.117

Graphical Abstract
  • spectroscopy and high-resolution mass spectrometry. Moreover, X-ray analysis was used for confirmation of structure of compound 4g (Figure 1). A plausible mechanism of the studied rearrangement is presented in Scheme 5. At first, anion A is generated from starting hydrazone 3 under action of base. Next
  • obtained the recyclized product 6a (Scheme 6), whose structure was confirmed by 1H, 13C NMR spectroscopy, high-resolution mass spectrometry and X-ray analysis. Based on the aforementioned reaction we have synthesized a set of pyrazolylisoxazoles 6 (Scheme 7). The proposed mechanism of investigated
  • hydrazone 3a. Synthesis of hydrazone 3b using phenylhydrazine hydrochloride. Synthesis of target 1,2,3-triazoles 4. Reaction conditions: 1 (0.5 mmol), arylhydrazine hydrochloride (0.55 mmol), EtOH (5 ml), then K2CO3 (1.5 mmol, 0.21 g), EtOH (5 ml). Proposed reaction mechanism. Reaction of 1d with hydrazine
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • , providing the corresponding product 3aa in 74% yield. Several control experiments were conducted to gain insight into the reaction mechanism of the electroreductive process. The hydroarylation of cyclopropane-substituted styrene 2l resulted in the formation of ring-opening product 3al’, and the simple
  • electroreductive reaction would proceed through a reductive radical-polar crossover pathway [57]. On the basis of mechanistic investigations and a literature report [47], a plausible mechanism for this electroreductive hydroarylation is depicted in Scheme 4. 1,3-DCB (Ep/2 = −1.9 V vs SCE in MeCN) [58] undergoes
  • ), 1,3-DCB (50 mol %), H2O (5.0 mmol), Et4NCl (0.1 mmol), MeCN (3 mL), Al(+)-Pt(−), 7.5 mA/cm2, 4.5 F/mol, 0 °C, blue LEDs. a4.5 F/mol. b2 (5 equiv). cMeCN (3 mL). d5 F/mol. 1,3-DCB, 1,3-dicyanobenzene. Gram-scale reaction and control experiments. Plausible mechanism. Evaluation of reaction conditions.a
PDF
Album
Supp Info
Letter
Published 10 Jun 2024
Graphical Abstract
  • 2.160 Å. These bond lengths support path I, which is a more valid pathway in the reaction mechanism. As can be seen in Figure 4, the energies of both the exo transition state and the exo product are lower than those of the endo, which also supports the experimental results. Conclusion Vegetable oils
  • , 47.03, 45.86; Anal calcd for C16H15NO4 (285.30): C, 67.36; H, 5.30; N, 4.91; found: C, 67.30; H, 5.26; N, 4.86. Reaction yields after seven uses of SSO and average recovery of the oil. Coupling constants of selected protons in compound 2a and its optimized geometric structure. Possible mechanism for the
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • triethylamine in methanol afforded benzocoumarines 18a–ac (Scheme 4) [33][34]. The formation of the product, which was obtained in a two-step one-pot reaction, can be explained by a mechanism similar to the one discussed for the formation of 17. 1,4-Addition gave intermediate D which was isolated, but used in
  • -butadienes The reaction of 3-formyl- and 3-acetylchromones 10a–i with 1,3-bis(silyloxy)-1,3-butadienes 6a–h, catalysed by Me3SiOTf, afforded hydroxylated benzophenones 20a–ag (Scheme 6) [35][36]. The products are formed by a mechanism related to the one discussed for the formation of products 19a–d. The same
  • with 1,3-bis(silyloxy)-1,3-butadienes 6a–z afforded azaxanthones 41a–am (Scheme 23) [45][46]. The formation of the products can be explained by the mechanism discussed for the formation of azaxanthone 40 that involves intermediates AF and AG. For most products, the yields were in the range of 30 to 66
PDF
Album
Review
Published 29 May 2024

Mechanistic investigations of polyaza[7]helicene in photoredox and energy transfer catalysis

  • Johannes Rocker,
  • Till J. B. Zähringer,
  • Matthias Schmitz,
  • Till Opatz and
  • Christoph Kerzig

Beilstein J. Org. Chem. 2024, 20, 1236–1245, doi:10.3762/bjoc.20.106

Graphical Abstract
  • cation was directly observed confirming the previously proposed mechanism of a three-component reaction. Several steps of the photoredox cycle were investigated separately, providing deep insights into the complex mechanism. The triplet-excited Aza-H, which was studied with quantitative LFP, is formed
  • mechanism of the recently reported sulfonylation/arylation [45][46] reaction using laser flash photolysis (LFP). LFP is a powerful spectroscopic tool in photocatalysis that allows us not only to distinguish between energy and electron transfer but also to detect transient triplet states and radicals
  • , yielding clear-cut evidence for the proposed reaction mechanism [47][48][49][50][51][52][53][54][55][56][57]. We found that quenching of the singlet-excited Aza-H by 4-cyanopyridine is the main pathway for the 3-CR, while the triplet state of our catalyst, which is formed with a quantum yield as high as
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2024

Competing electrophilic substitution and oxidative polymerization of arylamines with selenium dioxide

  • Vishnu Selladurai and
  • Selvakumar Karuthapandi

Beilstein J. Org. Chem. 2024, 20, 1221–1235, doi:10.3762/bjoc.20.105

Graphical Abstract
  • been used in oxyselenenylation of olefins, which follows an electrophilic addition mechanism [23][24][25]. However, such reagents are rarely used for electrophilic substitution of aromatic systems. Recently, notable progress has been made in the use of aromatic electrophilic substitution to synthesize
  • after 24 h. Whereas at the same molar ratio, polymers 1 and 2 were obtained in larger quantities of ≈2.3 g after the short time of 3 h (see Experimental section for details). Mechanistic aspects Mechanism for the formation of diaryl monoselenides The plausible mechanism for the formation of diaryl
  • rise to either diaryl selenoxide via dehydration or diaryl monoselenide via reductive elimination by eliminating H2O2 [39]. Observation of m/z peaks for compound 8 clearly confirmed the formation of diaryl selenoxide in the reaction. Mechanism for the formation of oxamides The possible reaction
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Cofactor-independent C–C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis

  • Jinmin Gao,
  • Liyuan Li,
  • Shijie Shen,
  • Guomin Ai,
  • Bin Wang,
  • Fang Guo,
  • Tongjian Yang,
  • Hui Han,
  • Zhengren Xu,
  • Guohui Pan and
  • Keqiang Fan

Beilstein J. Org. Chem. 2024, 20, 1198–1206, doi:10.3762/bjoc.20.102

Graphical Abstract
  • -dependent reactions of AlpJ-family oxygenases. Furthermore, the AlpJ- and JadG-catalyzed reactions of CR1 could be quenched by superoxide dismutase, supporting a catalytic mechanism wherein the substrate CR1 reductively activates molecular oxygen, generating a substrate radical and the superoxide anion O2
  • •−. Our findings illuminate a substrate-controlled catalytic mechanism of AlpJ-family oxygenases, expanding the realm of cofactor-independent oxygenases. Notably, AlpJ-family oxygenases stand as a pioneering example of enzymes capable of catalyzing oxidative reactions in either an FADH2/FMNH2-dependent or
  • bond cleavage, ring opening, and rearrangement reactions, yielding the respective products. Furthermore, the reactions of 8 catalyzed by JadG and AlpJ could be quenched by superoxide dismutase (SOD), supporting a catalytic mechanism involving the generation of a substrate radical and the superoxide
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol

  • Naziha Tarannam,
  • Prashant Kumar Gupta,
  • Shani Zev and
  • Dan Thomas Major

Beilstein J. Org. Chem. 2024, 20, 1189–1197, doi:10.3762/bjoc.20.101

Graphical Abstract
  • formation of (6,6) vs (5,7) is rooted in very slight changes in mechanism (protonation at C1 vs C10), it is of interest to understand whether there is a systematic difference in energy. In cases where enzymes use pathways with high-energy intermediates, the enzyme active site must in some way direct the
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Two-fold addition reaction of silylene to C60: structural and electronic properties of a bis-adduct

  • Masahiro Kako,
  • Masato Kai,
  • Masanori Yasui,
  • Michio Yamada,
  • Yutaka Maeda and
  • Takeshi Akasaka

Beilstein J. Org. Chem. 2024, 20, 1179–1188, doi:10.3762/bjoc.20.100

Graphical Abstract
  • . The regioselectivity in the addition reaction of 1 with C70 was explained earlier in terms of the interaction between the HOMO of 1 and the LUMO of C70 [16]. The reaction mechanism of ethylene with a silylene substituted with thiolate ligands has been studied using theoretical calculations, in which
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • , respectively. The proposed mechanism suggested that the active amido species (Mn5-a) was formed by treating Mn5 with the base. Then, the alkoxy intermediate Mn5-b is formed by reaction with the alcohol followed by release of an aldehyde and formation of the manganese hydride Mn5-c. The released aldehyde
  • mesitylene (Scheme 13). The formation of manganese(III) alkoxide intermediate Mn7-a, was believed to be the first step in the reaction mechanism which then releases the aldehyde under formation of hydride complex, Mn7-b. Then, the alcohol reacts with the hydride complex under release of hydrogen gas and
  • , giving 88% yield of the desired alkylated product. Several ketones were studied under the same conditions, with substituted benzyl and aliphatic alcohols giving up to 92% yield of the corresponding C-alkylated products (Scheme 24). The proposed mechanism showed that the pre-catalyst Mn1 was first
PDF
Album
Review
Published 21 May 2024

Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A

  • Maksim V. Kvach,
  • Stefan Harjes,
  • Harikrishnan M. Kurup,
  • Geoffrey B. Jameson,
  • Elena Harjes and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2024, 20, 1088–1098, doi:10.3762/bjoc.20.96

Graphical Abstract
  • of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand 10.3762/bjoc.20.96 Abstract Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was
  • accelerated by enzymes. These enzymes share a similar mechanism of cytosine deamination and a similar tertiary structure. Despite this similarity, individual enzymes are selective for the corresponding cytosine-containing substrates with little or no cross-reactivity. Cytosine deaminase, which is present in
  • . We demonstrated that dZ (IIc) does not inhibit A3 enzymes as the free nucleoside but becomes a low-µM inhibitor if it is used in ssDNA instead of the target dC in the recognition motifs of A3A/A3B and A3G [54]. This observation supports a mechanism in which ssDNA delivers dZ (IIc) to the active site
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Light on the sustainable preparation of aryl-cored dibromides

  • Fabrizio Roncaglia,
  • Alberto Ughetti,
  • Nicola Porcelli,
  • Biagio Anderlini,
  • Andrea Severini and
  • Luca Rigamonti

Beilstein J. Org. Chem. 2024, 20, 1076–1087, doi:10.3762/bjoc.20.95

Graphical Abstract
  • functionalisation on the aromatic ring when used in the dark [20]. A classic example is the bromination of toluene with molecular bromine. When the system is exposed to light (right side of Figure 1), a radical mechanism is initiated by Br• coming from Br2 homolysis. Propagation involves the reversible abstraction
  • follows a different mechanism, producing the ortho and para-bromoarenes through Ar-SE, that involves cationic intermediates. In this case, a catalytic amount of iodine [21][22] or FeCl3 [23] is added to enhance the electrophilicity of bromine. While widely employed and capable of producing reliable
  • Ar-SE mechanism, which is reported to proceed through the generation of a mixed molecular halogen [28]. As an alternative to iodine, the trityl cation [29] is reported too. Additional benefits of the method include its ability to work in neutral conditions, and the potential quantitative
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024
Other Beilstein-Institut Open Science Activities