Search results

Search for "electrophiles" in Full Text gives 309 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Assembly strategy for thieno[3,2-b]thiophenes via a disulfide intermediate derived from 3-nitrothiophene-2,5-dicarboxylate

  • Roman A. Irgashev

Beilstein J. Org. Chem. 2025, 21, 2489–2497, doi:10.3762/bjoc.21.191

Graphical Abstract
  • benzyl halides and other electrophiles were used under optimal reaction conditions to obtain various 3-(alkylthio)thiophene-2,5-dicarboxylates. Among them, compounds 4b–g, bearing benzylthio substituents, were prepared using different benzyl-type alkylating agents. It was found that the reaction
  • chlorides reacted smoothly to afford products 6a and 6b in 62% and 69% yields, whereas compound 6c was prepared in 76% yield using 2-(chloroacetyl)thiophene as the alkylating agent. This shows that the reaction tolerates a broader class of electrophiles, making it suitable for accessing precursors of TT
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • method for the enantioselective α-C(sp3) alkenylation of ketones containing imidazole auxiliaries (Scheme 10) [24]. The transformation was catalyzed by a chiral-at-rhodium Lewis acid 42. A variety of ketone electrophiles 40 and alkenyl trifluoroborate nucleophiles 41 were converted to the corresponding α
  • and pyrrolidinone electrophiles. Organocatalyzed formal [3 + 2] cycloadditions affording substituted pyrrolidines. Synthesis of a hexacyclic compound via an organocatalyzed enantioselective polyene cyclization. Nickel-catalyzed asymmetric cross-coupling reactions. Chiral cobalt–porphyrin
PDF
Album
Perspective
Published 28 Oct 2025
Graphical Abstract
  • nucleophiles [7][8][9][10][11], radicals [12][13][14][15] and electrophiles [16][17][18] to give cyclobutanes and cyclobutenes [19][20], which are building blocks in regio- and stereoselective synthesis [21][22][23][24][25][26][27] (Scheme 1a). Additionally, BCB has been used in bioconjugation due to its high
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2025

Aryl iodane-induced cascade arylation–1,2-silyl shift–heterocyclization of propargylsilanes under copper catalysis

  • Rasma Kroņkalne,
  • Rūdolfs Beļaunieks,
  • Armands Sebris,
  • Anatoly Mishnev and
  • Māris Turks

Beilstein J. Org. Chem. 2025, 21, 1984–1994, doi:10.3762/bjoc.21.154

Graphical Abstract
  • have been induced by addition of external halogen or selenium electrophiles and Brønsted acids. This encouraged us to develop a methodology involving a copper-catalyzed terminal alkyne arylation of propargylsilanes by diaryl-λ3-iodanes, followed by 1,2-silyl shift and terminated by nucleophile addition
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2025

Rhodium-catalysed connective synthesis of diverse reactive probes bearing S(VI) electrophilic warheads

  • Scott Rice,
  • Julian Chesti,
  • William R. T. Mosedale,
  • Megan H. Wright,
  • Stephen P. Marsden,
  • Terry K. Smith and
  • Adam Nelson

Beilstein J. Org. Chem. 2025, 21, 1924–1931, doi:10.3762/bjoc.21.150

Graphical Abstract
  • the synthesis of structurally diverse reactive probes bearing S(VI) electrophiles. Proteome-wide screens have shown that S(VI) electrophiles predominantly target lysine and tyrosine [12], although other residues (e.g. serine) may also be targeted within enzyme active sites [13]. It was envisaged that
  • successful execution of this approach and the demonstration of biological function of the resulting reactive probes. Results and Discussion We prepared five α-diazoamide substrates bearing S(VI) electrophiles (Scheme 1 and Table 1) [15]. Initially, three amines – morpholine, 4-phenylpiperidine and
  • tolerance of pendant S(VI) electrophiles has not been previously explored and is notable. Due to the relatively large size of the diazo substrates D1–5, it was decided to design a set of diverse co-substrates with 15 or fewer heavy (non-hydrogen) atoms. It was decided that the set should include co
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2025

Chiral phosphoric acid-catalyzed asymmetric synthesis of helically chiral, planarly chiral and inherently chiral molecules

  • Wei Liu and
  • Xiaoyu Yang

Beilstein J. Org. Chem. 2025, 21, 1864–1889, doi:10.3762/bjoc.21.145

Graphical Abstract
  • catalytic sites. The OH group on the phosphorus atom functions as a Brønsted acid site, while P=O serves as a Lewis base site, which enables the simultaneous activation of both nucleophiles and electrophiles in one reaction (Figure 1). The chiral properties of the catalysts are derived from the chiral
PDF
Album
Review
Published 10 Sep 2025

General method for the synthesis of enaminones via photocatalysis

  • Paula Pérez-Ramos,
  • Raquel G. Soengas and
  • Humberto Rodríguez-Solla

Beilstein J. Org. Chem. 2025, 21, 1535–1543, doi:10.3762/bjoc.21.116

Graphical Abstract
  • act as both electrophiles and nucleophiles [7]. This makes enaminones very reactive, providing an excellent scaffold for organic synthesis. Thus, enaminones are valuable building blocks in the preparation of several carbocyclic [8][9][10][11], heterocyclic [12][13][14][15][16][17][18] as well as
PDF
Album
Supp Info
Letter
Published 29 Jul 2025

Microwave-enhanced additive-free C–H amination of benzoxazoles catalysed by supported copper

  • Andrei Paraschiv,
  • Valentina Maruzzo,
  • Filippo Pettazzi,
  • Stefano Magliocco,
  • Paolo Inaudi,
  • Daria Brambilla,
  • Gloria Berlier,
  • Giancarlo Cravotto and
  • Katia Martina

Beilstein J. Org. Chem. 2025, 21, 1462–1476, doi:10.3762/bjoc.21.108

Graphical Abstract
  • environmental abundance, low cost and low overall toxicity. A wide range of aminating reagents have been utilised, including nitrogen electrophiles and amines in the presence of external or internal oxidants [27], in many types of copper-catalysed synthetic protocols. The direct copper-catalysed C–H amination
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
  • extended enolate 96 to the ketone, cyclisation via addition/elimination and base-catalysed epimerisation towards the thermodynamically more stable diastereomer. In 2019, Nair and co-workers showed that this formal cycloaddition can also be performed with 1,2-dicarbonyls as electrophiles and under an
PDF
Album
Review
Published 27 Jun 2025

Recent total synthesis of natural products leveraging a strategy of enamide cyclization

  • Chun-Yu Mi,
  • Jia-Yuan Zhai and
  • Xiao-Ming Zhang

Beilstein J. Org. Chem. 2025, 21, 999–1009, doi:10.3762/bjoc.21.81

Graphical Abstract
  • first report by Stork in the 1950s [1][2][3]. Compared with enols, enamines benefit from the lone pair of electrons on the nitrogen atom, which enhances the nucleophilicity of the alkene, enabling it to react with a broad range of electrophiles. This activation mode of carbonyl compounds has been so
  • iminium intermediates can serve as electrophiles. Due to the presence of an amide, the resulting iminiums from the enamides can be stabilized to take part in the second nucleophilic addition, though direct isomerization of the iminiums to the enamides is also possible (Figure 1). Guided by these
  • the α-position of enamide to be an active cyclization site, with the alkyne tether acting as the nucleophile. Since it is well-established that alkynes, when activated by transition metals such as gold or platinum, can also function as electrophiles, modulating the reactivity of the decahydroquinoline
PDF
Album
Review
Published 22 May 2025

Recent advances in allylation of chiral secondary alkylcopper species

  • Minjae Kim,
  • Gwanggyun Kim,
  • Doyoon Kim,
  • Jun Hee Lee and
  • Seung Hwan Cho

Beilstein J. Org. Chem. 2025, 21, 639–658, doi:10.3762/bjoc.21.51

Graphical Abstract
  • largely depends on the choice of the nucleophilic organometallic species (Scheme 2). For example, the asymmetric copper-catalyzed allylic alkylation utilizing organometallic species 5 bearing a primary carbon–metal bond predominantly constructs the stereogenic center derived from electrophiles. The
  • crucial advancement in this field. In particular, a key objective is developing regio-, diastereo-, and enantioselective allylic substitution reactions that can effectively construct enantioenriched stereogenic centers from either allylic electrophiles or organometallic nucleophiles [39][40]. This
  • AAA methodologies. Review Copper-catalyzed stereospecific coupling of chiral organometallic species with allylic electrophiles The asymmetric construction of carbon–carbon bonds through copper-catalyzed AAA has emerged as a powerful synthetic tool in organic chemistry [41][42][43][44][45]. The
PDF
Album
Review
Published 20 Mar 2025

Vinylogous functionalization of 4-alkylidene-5-aminopyrazoles with methyl trifluoropyruvates

  • Judit Hostalet-Romero,
  • Laura Carceller-Ferrer,
  • Gonzalo Blay,
  • Amparo Sanz-Marco,
  • José R. Pedro and
  • Carlos Vila

Beilstein J. Org. Chem. 2025, 21, 533–540, doi:10.3762/bjoc.21.41

Graphical Abstract
  • functionalization of 5-aminopyrazoles [26], we decided to study 4-alkenyl-5-aminopyrazoles as nucleophiles in the vinylogous addition reaction to electrophiles. Herein, we report the regioselective and diastereoselective functionalization of 4-cyclohexenyl-5-aminopyrazoles using alkyl trifluoropyruvates [27][28][29
  • ] as electrophiles. It is noteworthy that the development of such vinylogous functionalizations of this nitrogen heterocycle with a fluorine-containing electrophile may be of interest to pharmaceutical and medicinal chemists. Results and Discussion 4-(Alkenyl)-5-aminopyrazoles 3 were selected as
PDF
Album
Supp Info
Letter
Published 10 Mar 2025

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • require rethinking cavity design, but will be achieved predominantly by synthetic advances, for instance by the internal functionalization of cavities with bifunctionality – chemical groups that simultaneously activate nucleophiles and electrophiles or otherwise stabilize charged pairs. Herein, I argue
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • explores how this bismuth(I) complex undergoes oxidative addition with a variety of aryl electrophiles, including diazonium salts, iodonium salts, and challenging aryl iodides and aryl thianthrenium salts, typically requiring transition-metal catalysts (Figure 3). The reactivity of the N,C,N-bismuthinidene
  • -bismuthinidene complex can drive formal oxidative addition even with substrates that exhibit high reduction potentials such as aryl iodides and aryl thianthrenium salts, thereby expanding the scope of aryl electrophiles that can be subjected to oxidative addition. This mechanistic advancement, combined with the
PDF
Album
Review
Published 07 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • an indole motif with a ketone and a γ-lactam moiety occur in numerous natural substances [1][2][3][4]. Isatins have many interesting aspects in organic reactions and potential applications. The versatile reactivity of isatins used both as an electrophiles and nucleophiles and their easy availability
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • electrophiles in various nucleophilic transformations due to their susceptibility to rapid decomposition into the corresponding isocyanates (Scheme 1a) [2][3]. They have attracted increasing interest as electrophilic amide sources in amidation using transition-metal catalysts such as ruthenium, rhodium, and
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • amounts of copper reagents. Consequently, investigation into more practical and sustainable reactions remains an area of ongoing research [10]. Conventional cross-coupling reactions typically require C(sp2)-based electrophiles and nucleophiles as coupling partners. Generally, the reaction is initiated
  • through oxidative addition, followed by transmetalation and reductive elimination, to obtain the desired product. Throughout the catalytic cycle, the catalyst undergoes conversion between [M]n and [M]n+2 (Figure 1) [11]. However, using alkyl electrophiles as coupling partners in cross-coupling reactions
  • olefin addition reactions [20] conducted by various research groups, contributed to this area of research. Recently, the coupling reactions of C(sp3)-based electrophiles were explored using dual photoredox and copper catalysis, achieving selective radical coupling reactions involving alkyl halides [21
PDF
Album
Review
Published 16 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • enantioselectivity during the nucleophilic addition, and the subsequent aromatization completes central-to-axial chirality conversion delivering products 68. Dynamic kinetic resolution of naphthylindoles 69 was performed by reaction with bulky electrophiles such as azodicarboxylates 70 or o-hydroxybenzyl alcohols 72
PDF
Album
Review
Published 09 Jan 2025

Efficient synthesis of fluorinated triphenylenes with enhanced arene–perfluoroarene interactions in columnar mesophases

  • Yang Chen,
  • Jiao He,
  • Hang Lin,
  • Hai-Feng Wang,
  • Ping Hu,
  • Bi-Qin Wang,
  • Ke-Qing Zhao and
  • Bertrand Donnio

Beilstein J. Org. Chem. 2024, 20, 3263–3273, doi:10.3762/bjoc.20.270

Graphical Abstract
  • increase their structural and functional diversity. In the modern organic synthetic tool-box, the fluoroarene nucleophilc substitution (SNFAr) reaction possesses many outstanding advantages in the synthesis of π-conjugated functional molecules: the electrophiles are plentiful and include cheaply available
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2024

Enantioselective regiospecific addition of propargyltrichlorosilane to aldehydes catalyzed by biisoquinoline N,N’-dioxide

  • Noble Brako,
  • Sreerag Moorkkannur Narayanan,
  • Amber Burns,
  • Layla Auter,
  • Valentino Cesiliano,
  • Rajeev Prabhakar and
  • Norito Takenaka

Beilstein J. Org. Chem. 2024, 20, 3069–3076, doi:10.3762/bjoc.20.255

Graphical Abstract
  • toward electrophiles [14][15][16][17][18][19]. Consequently, all reported asymmetric catalytic aldehyde allenylation methods are currently limited to metal/metalloid reagents bearing R2 substituents [21][22][23][24][25][26][27][28][29][30][31][32][33][34], except for the methods with
PDF
Album
Supp Info
Letter
Published 25 Nov 2024

gem-Difluorovinyl and trifluorovinyl Michael acceptors in the synthesis of α,β-unsaturated fluorinated and nonfluorinated amides

  • Monika Bilska-Markowska,
  • Marcin Kaźmierczak,
  • Wojciech Jankowski and
  • Marcin Hoffmann

Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247

Graphical Abstract
  • laboratory [25], for our model reaction. The reactions were carried out under inert gas conditions in anhydrous solvents (THF or DCM) at −78 °C for 3 h, using several bases and electrophiles (Table 1). The use of electrophiles in the first test reactions was to confirm the generation of a carbanion, which
  • was to be evidenced by a substitution reaction at the alpha position. We started testing the different bases with lithium bis(trimethylsilyl)amide [39]. The reactions did not take place in the presence of LiHMDS (Table 1, entries 1 and 2), using either benzyl bromide or methyl iodide as electrophiles
  • group, proving that both gem-difluoroalkenes and the double bond of product Z-9a were excellent Michael acceptors. This confirmed that electrophiles were not involved in the reaction. We therefore focused only on using n-BuLi, which, as it turned out, acted as both the base and Michael's donor (Table 1
PDF
Album
Supp Info
Letter
Published 15 Nov 2024

Structure and thermal stability of phosphorus-iodonium ylids

  • Andrew Greener,
  • Stephen P. Argent,
  • Coby J. Clarke and
  • Miriam L. O’Duill

Beilstein J. Org. Chem. 2024, 20, 2931–2939, doi:10.3762/bjoc.20.245

Graphical Abstract
  • synthetic organic chemistry, becoming indispensable tools in total synthesis, late-stage functionalisation and radiolabelling [1][2][3][4][5][6][7][8][9]. Due to their great mechanistic flexibility, including reactivity as oxidants, electrophiles, radical precursors and transmetalating agents, they often
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • , diaryliodonium salts (DAIS), a versatile category of hypervalent iodine compounds, have seen significant progress in hypervalent iodine chemistry. Their efficiency and environmentally friendly characteristics have positioned DAIS as next-generation arylation reagents [29][30]. Other than aromatic electrophiles
PDF
Album
Review
Published 13 Nov 2024

Synthesis of tricarbonylated propargylamine and conversion to 2,5-disubstituted oxazole-4-carboxylates

  • Kento Iwai,
  • Akari Hikasa,
  • Kotaro Yoshioka,
  • Shinki Tani,
  • Kazuto Umezu and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2024, 20, 2827–2833, doi:10.3762/bjoc.20.238

Graphical Abstract
  • ] because of their easily modifiable dipeptide frameworks. Several methods exist for accessing PCPAs, such as the amination of 1-halo-1-alkynes [16][17], tandem reactions of α-imino esters with nucleophiles and electrophiles [18], and the nucleophilic addition of an acetylide to α-carbonylated N-acylimines
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024
Other Beilstein-Institut Open Science Activities