Search results

Search for "metal catalysis" in Full Text gives 125 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • release (82). Numerous cinnamic acid derivatives with electron-withdrawing and -donating groups were converted to the corresponding amides 76–81 in moderate to excellent yields (Scheme 24B) [60]. 2.1.2 Transition-metal catalysis: Several transition metals have been exploited to catalyze O/N-acylations of
PDF
Album
Review
Published 28 May 2025

Development and mechanistic studies of calcium–BINOL phosphate-catalyzed hydrocyanation of hydrazones

  • Carola Tortora,
  • Christian A. Fischer,
  • Sascha Kohlbauer,
  • Alexandru Zamfir,
  • Gerd M. Ballmann,
  • Jürgen Pahl,
  • Sjoerd Harder and
  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2025, 21, 755–765, doi:10.3762/bjoc.21.59

Graphical Abstract
  • , 13C, and 31P NMR as well as mass-spectrometric data of all synthesized compounds and selected crystal structures. Acknowledgements Portions of this work are included in the doctoral thesis of Christian Andreas Fischer, “Insights in Group 2 Metal Catalysis: New Ways and New Obstacles”, Friedrich
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Recent advances in allylation of chiral secondary alkylcopper species

  • Minjae Kim,
  • Gwanggyun Kim,
  • Doyoon Kim,
  • Jun Hee Lee and
  • Seung Hwan Cho

Beilstein J. Org. Chem. 2025, 21, 639–658, doi:10.3762/bjoc.21.51

Graphical Abstract
  • will be crucial for advancing the field of asymmetric synthesis. Representative transition-metal catalysis for allylic substitution. Formation of stereogenic centers in copper-catalyzed allylic alkylation reactions. Copper-mediated, stereospecific SN2-selective allylic substitution through retentive
PDF
Album
Review
Published 20 Mar 2025

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • traps the sulfonium ylide (Scheme 16). In an independent work, Mhaske et al. proposed an alternative methodology to furnish β-amino ketone 20a (Scheme 17), using DMSO as a formaldehyde surrogate but with activation via ammonium persulfate (APS), avoiding the use of transition-metal catalysis [51]. In
  • medicinal chemistry [58]. One of the most effective strategies for their synthesis is the addition of alkynes to imines or enamines, which is typically carried out under metal catalysis and elevated temperatures. This process requires the use of high boiling point solvents such as toluene, dimethylformamide
  • function as aldehyde equivalent in reactions where iminium species are involved. In this case, the C–X bond of the dihaloalkanes can be activated by metal catalysis, allowing the incorporation of the C1 building block by a mechanism that does not involve the preformation of an imine/enamine intermediate
PDF
Album
Review
Published 13 Mar 2025

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • organic chemistry [2][3][4][5], organocatalysis [6][7], metal catalysis [8][9], biochemistry [10][11], materials science [12][13], and supramolecular chemistry [14][15], although its successful application to asymmetric catalysis has been limited (Figure 1) [16][17][18][19][20]. In 2018, Arai and co
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • transition-metal catalysis. As the use of osmium catalysts has already demonstrated scalability in industrial applications [22], the introduction of bismuthinidene complexes presents another step forward in expanding the photoredox catalysis toolkit, potentially paving the way for more sustainable and
PDF
Album
Review
Published 07 Feb 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C–C and C–heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of
  • remains a significant challenge owing to the high energy barrier required for oxidative addition and facile β-hydride elimination [12]. The development of radical approaches facilitated by transition-metal catalysis has provided a promising solution to overcome the limitations of conventional coupling
  • achieved by precisely controlling the potential. Additionally, the merging of electrochemistry and transition-metal catalysis offers advantages in controlling substrate activation, intermediate reactivity, and bond formation, as well as facilitating asymmetric transformations. As a result, electrochemical
PDF
Album
Review
Published 16 Jan 2025

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • the hydrosilane to generate a silyl radical. This silyl radical is then oxidized anodically to produce a silyl cation. The silyl cation subsequently abstracts a proton from water (H2O), forming the desired silanol product (Scheme 28). While many methods combining metal catalysis and electrochemistry
  • product (Scheme 34). To date, only a few enantioselective reactions using metal catalysis and electrochemistry have been reported. Very recently, Ackermann and coworkers employed Co(OAc)2 as a catalyst and a salicyloxazoline derivative as a chiral ligand to achieve the electrochemical atroposelective C–H
PDF
Album
Review
Published 09 Oct 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
  • Research (NCCR) Catalysis, ETH Zurich, Zurich CH-8093, Switzerland 10.3762/bjoc.20.196 Abstract Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant
  • pitfall regarding computational data is its accuracy with respect to the ground truth, in particular for multiple factors relevant throughout catalysis, such as non-covalent interactions (NCIs) for organocatalysis or spin properties for transition metal catalysis [35][36]. While most quantities can in
  • transition metal catalysis [46][47][48] and biocatalysis [49][50][51], they are however not common for organocatalysis. Therefore, much research has been devoted to develop models that perform well on the available small data sets [52][53]. 1.2 Representation In order to be processed by any ML model, the
PDF
Album
Review
Published 10 Sep 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
PDF
Album
Review
Published 16 Aug 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • solubility issues of metal fluoride salts, safety issues with hydrogen fluoride, poor nucleophilicity [79], and side reactivity as a base [75][79], a few elegant examples of nucleophilic benzylic C(sp3)–H fluorination have been reported. Metal catalysis Fluoride sources have been used in combination with
PDF
Album
Review
Published 10 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • electrophotochemical transition metal catalysis [26][27][28][29][30][31] as a unique and powerful synthetic platform for radical decarboxylative functionalization of aliphatic carboxylic acids [32][33][34][35][36][37]. In particular, the commonly required high activation energy for radical decarboxylation was provided
  • invention of cooperative catalysis with electrochemical transition metal catalysis, which generally has mild oxidation potential for the generation of persistent radicals in the form of nucleophile-bound metal complexes. We and other groups have successfully applied this reaction design to enantioselective
  • metal catalysis as a viable and potentially general approach for reaction discovery and would find broad application in new synthetic contexts. Decarboxylative cyanation: background and our working hypothesis. Scope of electrophotochemical decarboxylative cyanation of aliphatic carboxylic acids. All
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • remarkable advantages such as an environmentally benign alternative to traditional transition-metal catalysis, a low cost, nontoxicity, good stability, and easy handling [30][31]. Upon increasing the amount of FeCl3 to 20 mol %, the time of the reaction was reduced from 86 to 38 hours, and the yield of 5a
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • . developed an asymmetric iron catalyst with the aim of expanding the platform of metal catalysis. Catalysts 14 and 15 proved to be effective in the transformation of glyoxal monohydrates 1a and alcohol 2, to deliver mandelate esters 3a in good yields and enantioselectivities via an enantioselective
PDF
Album
Review
Published 19 Jun 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • ; imidazolium; NHC; Introduction Imidazolium-derived nucleophilic heterocyclic carbenes (NHCs) have had a sustained impact across the fields of organometallic and main group chemistry, transition-metal catalysis, materials synthesis and organocatalysis [1]. Laterally annellated polycyclic NHCs offer a useful
  • provide scope to influence the reactivity profile of their resulting metal complexes through steric shielding, direct stabilising interactions with the metal, or by proximal effects to reactive species. Given the sensitivity of metal catalysis to even subtle steric and electronic changes in the ligand
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • overview of the diverse mechanisms that have been proposed for radical based transformations initiating from NHPI esters. The discussion is organized into four sections: (i) mechanisms under photochemical conditions, (ii) initiation by metal catalysis and stoichiometric reductants, (iii) N-heterocyclic
  • desaturation of aliphatic carboxylic acids [83]. Initiation by metal catalysts and stoichiometric reductants The activation of NHPI esters under transition metal catalysis without the need of light is also feasible, and generally, two types of coupling reactions can be envisioned. On one hand, the
PDF
Album
Perspective
Published 21 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • ; multi-step reactions; multicomponent reactions; one-pot synthesis; organocatalysis; tandem reactions; transition-metal-catalysis; The synthesis of pharmaceutical ingredients, natural products, agrochemicals, ligand systems, and building blocks for materials science has reached a high level of
PDF
Album
Editorial
Published 08 Feb 2024

Chiral phosphoric acid-catalyzed transfer hydrogenation of 3,3-difluoro-3H-indoles

  • Yumei Wang,
  • Guangzhu Wang,
  • Yanping Zhu and
  • Kaiwu Dong

Beilstein J. Org. Chem. 2024, 20, 205–211, doi:10.3762/bjoc.20.20

Graphical Abstract
  • relatively strict reaction conditions (up to 150 bar H2). In 2022, Liu’s group reported an asymmetric hydrogenation of 3H-indoles catalyzed by a chiral Mn complex, which showed good yield and enantioselectivity [25]. In addition to metal catalysis for the enantioselective reduction, asymmetric
PDF
Album
Supp Info
Letter
Published 01 Feb 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • materials science. In recent years, the combination of dual photoredox with first-row transition-metal catalysis has emerged as a powerful tool for achieving various cross-coupling reactions involving C–N, C–O, C–S, and other chemical bonds [3][23]. In this context, Guan et al. theoretically designed a
  • academic research and industrial applications. As a result, significant efforts have been devoted to the development of various methods for the reduction of nitroarenes [39]. Recent advancements in the catalytic reduction of nitroarenes largely rely on transition-metal catalysis through direct
PDF
Album
Review
Published 22 Nov 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • transition-metal catalysis [31], we disclosed an activating group-free alkynylation–cyclization sequence to (aza)indoles [32][33] that could be readily concatenated with a concluding N-alkylation of the 7-azaindole intermediate in the sense of consecutive three-component coupling–cyclization–alkylation
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • drug and natural compounds containing functionalized ether α-C(sp3)–H bonds CDC reactions can be applied. This review mainly focuses on the CDC reactions of ether oxygen α-C(sp3)–H bonds via non-noble metal-catalysis (Scheme 1d). Review Non-noble metal-catalyzed CDC reactions involving ether α-C(sp3)–H
  • is similar to the CDC reaction of simple ethers by transition-metal catalysis. First, Ag triggers the oxidant to produce oxidant radicals, and the corresponding ether radicals are obtained by extraction of H atoms from the ether substrates by the oxidant radicals. Then, the addition of the radicals
PDF
Album
Review
Published 06 Sep 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • phosphine oxide, and selenides to selenoxides. Sulfoxide, phosphine oxide, and selenoxide-containing molecules have diverse applications in the pharmaceutical industry [10], as chiral auxiliaries or as ligands for asymmetric metal catalysis [11], and in materials such as polymers [12][13] and flame
  • retardants [14]. Sulfoxides are prominent pharmaceutical ingredients, while phosphine oxides improve solubility of corresponding compounds [15] and have applications in catalysis and materials science [16]. Selenoxides find use as oxygen transfer agents and donor ligands in metal catalysis and organic
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • widely used as reagents, organocatalysts, or phase transfer reagents [58][59][60][61] were synthesized from aryl chlorides in various yields (20–87%) under mild photocatalytic conditions whereas previously reported protocols typically relied on transition metal catalysis or high temperature processes [62
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • the tremendous progress in organic chemistry over the last few decades, metal catalysis has been increasingly and successfully replaced by organocatalysis, i.e., accelerating the rate of chemical transformations by using small organic molecules as catalysts. Although being discovered more than 100
PDF
Album
Review
Published 28 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • , diversely functionalized pyridines have been synthesized via C–H activation under transition-metal and rare earth metal catalysis, including C–H alkylation, alkenylation, arylation, heteroarylation, borylation, etc. Recently, metal-free approaches have also been developed for the C–H functionalization of N
  • , acrylates, allenes, and alkynes as coupling partners achieving the functionalized C(sp2)–H-olefinated pyridine frameworks via metal catalysis. ortho-C–H Alkenylation In 2012, Huang and co-workers [74] disclosed a ligand-free oxidative cross-coupling reaction of pyridine with acrylates, acrylamides, and
PDF
Album
Review
Published 12 Jun 2023
Other Beilstein-Institut Open Science Activities