Search results

Search for "organometallic" in Full Text gives 319 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Organocatalytic kinetic resolution of 1,5-dicarbonyl compounds through a retro-Michael reaction

  • James Guevara-Pulido,
  • Fernando González-Pérez,
  • José M. Andrés and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2025, 21, 473–482, doi:10.3762/bjoc.21.34

Graphical Abstract
  • organometallic catalysis [15], enzymatic catalysis [16], aminocatalysis [17][18][19], and hydrogen-bonding catalysis [20][21][22]. The Michael addition reaction is a versatile synthetic methodology that allows the formation of new carbon–carbon and carbon–heteroatom bonds through the coupling of electron-poor
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane

  • Zahra Noori,
  • Miquel Solà,
  • Clara Viñas,
  • Francesc Teixidor and
  • Jordi Poater

Beilstein J. Org. Chem. 2025, 21, 412–420, doi:10.3762/bjoc.21.29

Graphical Abstract
  • , exceptional thermal and chemical stability, and robust synthetic versatility [16][17] – make carborane derivatives essential components in various fields. These include pharmaceuticals [18][19][20][21][22], boron neutron capture therapy (BNCT) [23][24][25][26], organometallic ligands [27], and functional
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2025

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • applied in various fields, including organometallic catalysis, dye-sensitized solar cells, sensing, artificial olfactory systems, photodynamic therapy (PDT), anticancer drugs, biochemical probes, and electrochemical devices. Relevant examples of these two pyrrolic macrocycles as metal-free organocatalysts
PDF
Album
Review
Published 27 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • or without the use of transition metals [44]. Thus, they address both the financial and environmental challenges associated with organic synthesis by acting as environmentally benign substitutes for costly organometallic catalysts and heavy-metal-based oxidants. Diaryl iodide salts consist of two
  • salt, subsequently leading to decarboxylative C–C coupling. Notably, this method achieves the incorporation of two fluorine atoms in the benzyl position without resorting to hazardous fluorination reagents, transition-metal catalysts, or organometallic compounds. The utility of this reaction is
PDF
Album
Review
Published 13 Nov 2024

Multicomponent synthesis of α-branched amines using organozinc reagents generated from alkyl bromides

  • Baptiste Leroux,
  • Alexis Beaufils,
  • Federico Banchini,
  • Olivier Jackowski,
  • Alejandro Perez-Luna,
  • Fabrice Chemla,
  • Marc Presset and
  • Erwan Le Gall

Beilstein J. Org. Chem. 2024, 20, 2834–2839, doi:10.3762/bjoc.20.239

Graphical Abstract
  • ]. Since its discovery in 1912, the reaction has benefitted from regular improvements over the years and recent developments, such as the use of organometallic species as nucleophiles in the so-called “organometallic Mannich reaction”, which have helped to expand the boundaries of the original process [4
  • ]. In this context, while significant contributions have highlighted the reliable use of diverse organometallic species in the three-component coupling, most examples of sp3-hybridized compounds have remained restricted to allyl [5] or benzyl [5][6] organometallic reagents. Conversely, examples of
  • organometallic Mannich couplings involving nonstabilized organometallics are uncommon and mostly limited to dialkylzinc reagents, likely due to their commercial availability, their significant reactivity, and their functional-group tolerance [7][8][9][10]. However, the molecular diversity accessible with these
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2024

Facile preparation of fluorine-containing 2,3-epoxypropanoates and their epoxy ring-opening reactions with various nucleophiles

  • Yutaro Miyashita,
  • Sae Someya,
  • Tomoko Kawasaki-Takasuka,
  • Tomohiro Agou and
  • Takashi Yamazaki

Beilstein J. Org. Chem. 2024, 20, 2421–2433, doi:10.3762/bjoc.20.206

Graphical Abstract
  • organometallic species [16][17][18][19]. At least in part, its high reactivity was considered to be due to the significantly lower-lying LUMO energy level by the attachment of electron-withdrawing trifluoromethyl (CF3) and ethoxycarbonyl groups [20]. As we previously pointed out [10][21], the effective
  • preparation of 2a. Moreover, the fact that only very limited examples are known for their synthetic application except for the synthesis of 4,4,4-trifluorothreonine [29][33], stereoselective ring opening with organometallic species [29], and so on [32] also stimulated our interest. In this article, we would
  • reactivity of the CF3-containing ethyl 2,3-epoxybutanoate 2a towards a variety of organometallic species [27][28][29], because relatively readily accessible Grignard-based cuprates were not involved, their applicability to 2b as the representative partner was investigated here (Table 5). The 1:2 ratio of CuI
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • , Russia G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinin str. 49, 603137, Nizhny Novgorod, Russia North-Caucasus Federal University, Pushkin str. 1, 355017, Stavropol, Russia Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • as a key methodology in the synthesis of alkaloids and natural products with 4-, 5- and 6-membered cyclic amine motifs. Initially reliant on stoichiometric reagents, synthetic chemists predominantly used N-substituted chiral imines, organometallic chiral reagents and achiral reagents with an
PDF
Album
Review
Published 16 Sep 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
PDF
Album
Review
Published 16 Aug 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches. Keywords: carbonylation; functionalization; indole; metal catalyst; organometallic chemistry; Introduction Indole is a heterocyclic compound consisting of a benzene ring fused with a pyrrole
PDF
Album
Review
Published 30 Apr 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • the glycosidic bond using an organometallic purine or pyrimidine derivative and an electrophilic furanose derivative [23][25]. This process can result in anomeric mixtures, so 5 has potential applications in targeted synthesis, as the configuration of the pseudo-anomeric centre matches the common
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • elimination of the organometallic intermediate would lead to the desired product (Scheme 1B, reaction 1). Unfortunately, this approach will not be compatible in the case of azidation since the copper, azides and alkynes present in the mixture are expected to undergo alkyne–azide cycloaddition reactions [28
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • ; imidazolium; NHC; Introduction Imidazolium-derived nucleophilic heterocyclic carbenes (NHCs) have had a sustained impact across the fields of organometallic and main group chemistry, transition-metal catalysis, materials synthesis and organocatalysis [1]. Laterally annellated polycyclic NHCs offer a useful
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • hydroamination (1b) a KIE of 2.4 is estimated based on their statement of percent conversions in MeOH (61%) compared to MeOH-d4 (25%) after 20 hours at 50 °C [7]. Large isotope effects (>7) have been seen in a number of organometallic reactions [75] and tunneling need not be invoked if proton transfer involves
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

(E,Z)-1,1,1,4,4,4-Hexafluorobut-2-enes: hydrofluoroolefins halogenation/dehydrohalogenation cascade to reach new fluorinated allene

  • Nataliia V. Kirij,
  • Andrey A. Filatov,
  • Yurii L. Yagupolskii,
  • Sheng Peng and
  • Lee Sprague

Beilstein J. Org. Chem. 2024, 20, 452–459, doi:10.3762/bjoc.20.40

Graphical Abstract
  • ) and butyllithium (BuLi), as well as the reactions of the resulting organometallic compounds. 1.2 Equivalents of a solution of iPrMgCl in THF were added to bromoolefin 3a in Et2O or THF at −78 °C and then after 1 h at the same temperature 1 equivalent of 4-fluorobenzaldehyde (9) was added. After
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • decarboxylative cross-coupling (DCC) of NHPI esters with organometallic reagents, resembling classic Kumada, Negishi, and Suzuki couplings, has been enabled by nickel (Ni), cobalt (Co), iron (Fe), and copper (Cu) catalysts [84][85][86][87][88][89][90][91] (Scheme 23A). The typical mechanism begins by
  • transmetallation of the organometallic coupling partner 120 to the TM catalyst (Scheme 23B). The resulting organometallic intermediate 121 can act as a reducing agent, transferring an electron to RAE 10 to form radical anion 11 and the corresponding oxidized metal complex 122. Following fragmentation, the ensuing
PDF
Album
Perspective
Published 21 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • stereocenters [7]. In the Review paper by Kisszékelyi and Šebesta, the diverse variety of chiral metal enolates obtained by asymmetric conjugate additions of organometallic reagents and the possibilities to engage metal enolates in tandem reactions with new electrophiles are presented [8]. A Perspective from X
PDF
Album
Editorial
Published 08 Feb 2024

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • just three decades (Figure 1) [2]. In particular, cyclic diaminocarbenes based on the imidazoline, benzimidazole, or imidazole ring system (A–C) have led to a myriad of applications in organometallic chemistry, homogeneous catalysis, and materials science, to name just a few [3][4][5]. Due to their
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Active-metal template clipping synthesis of novel [2]rotaxanes

  • Cătălin C. Anghel,
  • Teodor A. Cucuiet,
  • Niculina D. Hădade and
  • Ion Grosu

Beilstein J. Org. Chem. 2023, 19, 1776–1784, doi:10.3762/bjoc.19.130

Graphical Abstract
  • Catalin C. Anghel Teodor A. Cucuiet Niculina D. Hadade Ion Grosu Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular Organic and Organometallic Chemistry Centre, 11 Arany Janos Str., RO-400028-Cluj-Napoca, Romania University of Bucharest, Faculty of Chemistry
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2023

Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  • Zhang Dongxu

Beilstein J. Org. Chem. 2023, 19, 1741–1754, doi:10.3762/bjoc.19.127

Graphical Abstract
  • =N motif within hydrazones gives them both electrophilic and nucleophilic character. In 2005, Brigaud et al. developed a highly stereoselective method for the synthesis of α-trifluoromethylamines with organometallic reagents to extend the asymmetric methodologies of trifluoroacetaldehyde hydrazones
  • building blocks [91] (Scheme 14). Inspired by previous accounts and this work [92][93], Hu et al. explored 1,2- nucleophilic addition reactions of trifluoromethylated acylhydrazones with organometallic reagents for the synthesis of trifluorinated homoallylic acylhydrazines [94][95][96][97][98
  • Brønsted acid-assisted Lewis base catalysis. Synthesis of CF3-pyrazoles and CF3-1,6-dihydropyridazines. Asymmetric reactions of trifluoromethylimines with organometallic reagents. Mannich-type reaction of trifluoroacetaldehyde hydrazones. Synthesis of trifluoromethylated hydrazonoyl halides. Early work of
PDF
Album
Review
Published 15 Nov 2023

Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity

  • Swagat K. Mohapatra,
  • Khaled Al Kurdi,
  • Samik Jhulki,
  • Georgii Bogdanov,
  • John Bacsa,
  • Maxwell Conte,
  • Tatiana V. Timofeeva,
  • Seth R. Marder and
  • Stephen Barlow

Beilstein J. Org. Chem. 2023, 19, 1651–1663, doi:10.3762/bjoc.19.121

Graphical Abstract
  • strong dopants, reacting with semiconductors more rapidly and predictably than hydride donors such as the corresponding 1H species [8], cleanly only to give SC•– and the corresponding monomeric cations. However, 12 dopants offer the possibility of more planar dopant ions than the organometallic dimers
  • unit) are fairly bulky, whereas in the hydrides there is a large difference in bulk between the hydridic H-atom and theY-group and thus a strong preference for Y to occupy a pseudo-equatorial position. As with other 12 species [14] and related organic [35][37][38] and organometallic dimers [22][39][40
  • ). We have previously noted a similar lack of correlation between bond length and bond dissociation energy in comparing the structures of 1c2 (Y = Fc; R = R' = H) and 1e2 (Y = cyclohexyl; R = R' = H) [14], and in comparing those of different organometallic dimers [22][46]. As noted in our previous work
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • is oxygen tolerant and can be carried out in a milder environment [65][66]. Pan and co-workers recently further advanced the RAFT techniques by allowing them to be fueled by oxygen [67]. The mechanism of a RAFT polymerization is shown in Scheme 6 [68]. Organometallic-mediated radical polymerization
PDF
Album
Review
Published 18 Oct 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • caused by its structural features. NHCs constitute a well-established class of new ligands in organometallic chemistry. Although initially NHCs were regarded as pure σ-donor ligands, later experimental and theoretical studies established the presence of a significant back donation from the d-orbital of
  • ligands in organometallic chemistry. After the first synthesis of stable monomeric NHCs, spectroscopic studies promptly revealed their similarity with phosphines. Indeed, both these classes of ligands are σ-donor ligands with low π-backdonating character [16][17]. In the beginning, the NHCs were perceived
  • selective method for the synthesis of a wide range of organic compounds [55][56]. Organometallic reagents, such as organolithium, organomagnesium, and organozinc reagents are commonly used in conjugate addition reactions. 2.2.1 Reaction with Grignard reagents: Organomagnesium reagents, such as Grignard
PDF
Album
Review
Published 20 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • functionalization via the canonical organometallic steps of oxidative addition/reductive elimination was ruled out via catalytic reaction of the macrocyclic Groves-type porphyrin catalyst V, a species that is unable to accommodate the mutual cis-orientation of ligands for metal-centered reductive elimination. The
PDF
Album
Perspective
Published 15 Aug 2023
Other Beilstein-Institut Open Science Activities