Search results

Search for "radical" in Full Text gives 871 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Visible-light-driven NHC and organophotoredox dual catalysis for the synthesis of carbonyl compounds

  • Vasudevan Dhayalan

Beilstein J. Org. Chem. 2025, 21, 2584–2603, doi:10.3762/bjoc.21.200

Graphical Abstract
  • Vasudevan Dhayalan Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Puducherry, India 10.3762/bjoc.21.200 Abstract Over the past two decades, organocatalyzed visible-light-mediated radical chemistry has significantly influenced modern synthetic organic
  • chemistry. In particular, dual catalysis combining N-heterocyclic carbenes (NHCs) with organophotocatalysts (e.g., 4CzIPN, eosin Y, rhodamine, 3DPAFIPN, Mes-Acr-Me+ClO4−) has emerged as a powerful photocatalytic strategy for efficiently constructing a wide variety of carbonyl compounds via radical cross
  • ; NHC; organic photocatalyst; radicals; visible-light; Introduction Over the last ten years, NHC-catalyzed visible-light-promoted radical chemistry has been extensively developed for the cost-effective and practical synthesis of bioactive intermediates, pharmaceuticals, drugs, and natural products [1
PDF
Album
Review
Published 21 Nov 2025

Recent advances in total synthesis of illisimonin A

  • Juan Huang and
  • Ming Yang

Beilstein J. Org. Chem. 2025, 21, 2571–2583, doi:10.3762/bjoc.21.199

Graphical Abstract
  • deprotection, afforded enal 42. To avoid the chemoselectivity issues in the subsequent allylic oxidation and radical cyclization steps, enal 42 was converted to 43 by reduction of the aldehyde and protection of the resultant diol with Ph2SiCl2. Allylic oxidation of 43 with 44 [37] afforded the enone in 22
PDF
Album
Review
Published 20 Nov 2025

Total syntheses of highly oxidative Ryania diterpenoids facilitated by innovations in synthetic strategies

  • Zhi-Qi Cao,
  • Jin-Bao Qiao and
  • Yu-Ming Zhao

Beilstein J. Org. Chem. 2025, 21, 2553–2570, doi:10.3762/bjoc.21.198

Graphical Abstract
  • -ryanodol, cinnzeylanol, and cinncassiols A,B In 2014, the Inoue group at the University of Tokyo reported a synthetic strategy for ryanodol (4) that leveraged substrate symmetry design, employing intramolecular radical coupling and olefin metathesis as key steps [46] (Scheme 4). Recognizing an embedded
  • -alkoxy bridgehead radical addition then installed an allyl fragment, and ring-closing metathesis (RCM) smoothly formed the C ring to complete the core skeleton. The total synthesis was finalized by installing the four remaining stereocenters (C2, C3, C9, and C10). The specific synthetic route is as
  • hemiacetalization to construct the oxa[3.2.1]-bridged ring system, thereby forming the D and E rings. Subsequently, the introduction of a tertiary hydroxy thiocarbonate at C11 afforded compound 38. Under thermal conditions, 38 underwent smooth introduction of an allyl fragment via intermolecular radical addition
PDF
Album
Review
Published 19 Nov 2025

Ni-promoted reductive cyclization cascade enables a total synthesis of (+)-aglacin B

  • Si-Chen Yao,
  • Jing-Si Cao,
  • Jian Xiao,
  • Ya-Wen Wang and
  • Yu Peng

Beilstein J. Org. Chem. 2025, 21, 2548–2552, doi:10.3762/bjoc.21.197

Graphical Abstract
  • (2) and C (3), featuring a visible light-catalyzed radical cation cascade for the formation of the C8–C8′ and C2–C7′ bonds [6]. Subsequently, they improved the reaction conditions to achieve the racemic synthesis of aglacins A (1) and E (4) as well [7]. In 2021, the Gao group described the total
  • relies on a non-photocatalysis approach. Results and Discussion Retrosynthetic analysis of (+)-aglacin B Based on the retrosynthetic analysis shown in Scheme 1, both C8′–C8 and C7–C1 bonds in (+)-aglacin B (2) could be constructed in one-step from the β-bromo acetal 5 by a Ni-promoted tandem radical
PDF
Album
Supp Info
Letter
Published 18 Nov 2025

Synthesis of the tetracyclic skeleton of Aspidosperma alkaloids via PET-initiated cationic radical-derived interrupted [2 + 2]/retro-Mannich reaction

  • Ru-Dong Liu,
  • Jian-Yu Long,
  • Zhi-Lin Song,
  • Zhen Yang and
  • Zhong-Chao Zhang

Beilstein J. Org. Chem. 2025, 21, 2470–2478, doi:10.3762/bjoc.21.189

Graphical Abstract
  • of new reactions and strategies. In this work, a PET-initiated cationic radical-derived interrupted [2 + 2]/retro-Mannich reaction of N-substituted cyclobutenone provided a facile approach to the direct construction of the ABCE tetracyclic framework of Aspidosperma alkaloids. DFT calculations showed
  • formation of unique radical intermediates [9][10]. We previously demonstrated the Ir-catalyzed [2 + 2] cyclization/retro-Mannich reaction of a tryptamine-substituted cyclopentenone F, which led to the formation of indoline J (Figure 1b) [15]. Unlike other reported methods [16][17][18], the PET reaction of F
  • generates the cationic radical G, which initiates formation of H, which has a strained bicyclo [3.2.0]heptane core. Strain release of H triggers a downstream radical-driven retro-Mannich reaction, which ultimately results in the formation of J via reductive quenching of intermediate I. As part of our
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2025

Transformation of the cyclohexane ring to the cyclopentane fragment of biologically active compounds

  • Natalya Akhmetdinova,
  • Ilgiz Biktagirov and
  • Liliya Kh. Faizullina

Beilstein J. Org. Chem. 2025, 21, 2416–2446, doi:10.3762/bjoc.21.185

Graphical Abstract
  • ] described the first total syntheses of racemic meroterpenes (±)-andrastin D (106), (±)-preterrenoid (107), (±)-terrenoid (108), and (±)-terretonin L (109) using a Co-catalyzed homoallyl-type rearrangement/hydrogen atom transfer (HAT) as ring contraction strategy. Radical hydrochlorination of olefin 110 [57
  • (±)-terretonin L (109) as the main product with a yield of 46%. Radical hydrochlorination of olefin 110 under more powerful oxidizing conditions (Co(II) catalyst 113, N-fluoropyridinium salt (F+) 114), resulted in the formation of cyclopentenone derivative 112 with a yield of 90%. Demethylation of the latter led
PDF
Album
Review
Published 06 Nov 2025

An Fe(II)-catalyzed synthesis of spiro[indoline-3,2'-pyrrolidine] derivatives

  • Elizaveta V. Gradova,
  • Nikita A. Ozhegov,
  • Roman O. Shcherbakov,
  • Alexander G. Tkachenko,
  • Larisa Y. Nesterova,
  • Elena Y. Mendogralo and
  • Maxim G. Uchuskin

Beilstein J. Org. Chem. 2025, 21, 2383–2388, doi:10.3762/bjoc.21.183

Graphical Abstract
  • bond cleavage to generate an N-imidoyl radical intermediate that undergoes intramolecular cyclization to yield the spirocyclic product (Scheme 1, path g) [14]. Notably, iron is known to exhibit similar behavior in single-electron transfer (SET) processes [15][16][17]. In fact, we previously
  • . Third, the introduction of an ortho-methyl substituent on the ketone moiety (3m) likewise suppressed product formation, likely due to steric hindrance interfering with cyclization at the C3 position of the indole ring. Based on literature precedents [15][16], we propose a mechanism involving a radical
  • pathway (Scheme 4). Initial Fe(II)-mediated reductive cleavage of the N–O bond in the ketoxime acetate generates an iminyl radical. This is followed by a 5-exo-trig cyclization to form a carbon-centered radical. Final single-electron oxidation by Fe(III) delivers the desired spirocyclic product. All
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2025

Comparative analysis of complanadine A total syntheses

  • Reem Al-Ahmad and
  • Mingji Dai

Beilstein J. Org. Chem. 2025, 21, 2334–2344, doi:10.3762/bjoc.21.178

Graphical Abstract
  • . With optically active 51 in hand, its extra ketone functionality was reduced via thioacetalization (51 → 52) and radical reduction (52 → 53) to provide 53, a diverging point to access C–H arylation partners 54 and 55. mCPBA oxidation of 53 afforded pyridine N-oxide 54. The Ir-catalyzed C–H borylation
PDF
Album
Review
Published 30 Oct 2025

Recent advances in Norrish–Yang cyclization and dicarbonyl photoredox reactions for natural product synthesis

  • Peng-Xi Luo,
  • Jin-Xuan Yang,
  • Shao-Min Fu and
  • Bo Liu

Beilstein J. Org. Chem. 2025, 21, 2315–2333, doi:10.3762/bjoc.21.177

Graphical Abstract
  • intermediate is also capable of cyclization through radical coupling to form cyclobutanol D, a process systematically expanded upon by Yang's group at the University of Chicago [4], which later became known as the Norrish–Yang cyclization. In recent years, dicarbonyls, specifically 1,2-diketones, α-keto esters
  • ]. In contrast to the direct radical coupling in Norrish–Yang cyclization, the distal biradical F, formed from quinone E through a pathway analogous to that of C in the photoredox process, subsequently undergoes intramolecular SET to generate a zwitterion G. This intermediate is then trapped by the
  • dysideanone B (35) was completed from 46 via oxidative ethoxylation. The diversity of the key photoreaction stems from three factors: (1) the ability of the excited quinone moiety in 44 to abstract hydrogen atoms from distinct positions; (2) delocalization of the semiquinone radical; (3) the involvement of a
PDF
Album
Review
Published 30 Oct 2025

Halogenated butyrolactones from the biomass-derived synthon levoglucosenone

  • Johannes Puschnig,
  • Martyn Jevric and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2025, 21, 2297–2301, doi:10.3762/bjoc.21.175

Graphical Abstract
  • traces of the desired product. Methods for the installation of a CF3-group on enones are limited, although approaches have been applied to quinones, uracils, flavones or arylenones via radical pathways [39][40][41][42]. As per the fluorination reactions, we envisaged that a leaving group in the β
PDF
Album
Supp Info
Letter
Published 29 Oct 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • Anna C. Renner Sagar S. Thorat Hariharaputhiran Subramanian Mukund P. Sibi Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, 58105-5516, USA 10.3762/bjoc.21.174 Abstract This perspective is focused on enantioselective free radical reactions. It
  • describes several important catalytic asymmetric strategies applied to enantioselective radical reactions, including chiral Lewis acid catalysis, organocatalysis, photoredox catalysis, chiral transition-metal catalysis and photoenzymatic catalysis. The application of electrochemistry to asymmetric radical
  • transformations is also discussed. Keywords: chiral Lewis acid; electrochemistry; enantioselective radical reaction; organocatalysis; photoenzymatic catalysis; photoredox; Introduction Asymmetric catalysis plays an integral role in the enantioselective synthesis of organic compounds. A wide variety of
PDF
Album
Perspective
Published 28 Oct 2025

Pathway economy in cyclization of 1,n-enynes

  • Hezhen Han,
  • Wenjie Mao,
  • Bin Lin,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2025, 21, 2260–2282, doi:10.3762/bjoc.21.173

Graphical Abstract
  • radical initiated intramolecular cascade cyclization of 1,n-enynes to provide structurally diverse heterocycles (Scheme 4) [11]. Solvent selection dictated divergent reaction pathways under I2/TBHP oxidation. When an acetonitrile/water mixed solvent was used, iodine radical addition to the alkyne
  • preferentially initiated 6-endo-trig cyclization, affording iodinated homoallylic alcohol piperidines 15 (Scheme 4, path a). Conversely, cyclopropane-annulated pyrrolidines 17 were constructed using methanol as solvent through hydroxyl radical-mediated 5-exo-trig cyclization pathway (Scheme 4, path b). This
  • intellectually rewarding synthetic methodologies, with far-reaching implications for both fundamental science and industrial applications. Economical synthesis and pathway economy. Au(I)-catalyzed cascade cyclization paths of 1,5-enynes. Au(I)-catalyzed cyclization paths of 1,7-enynes. I2/TBHP-mediated radical
PDF
Album
Review
Published 27 Oct 2025

Electrochemical cyclization of alkynes to construct five-membered nitrogen-heterocyclic rings

  • Lifen Peng,
  • Ting Wang,
  • Zhiwen Yuan,
  • Bin Li,
  • Zilong Tang,
  • Xirong Liu,
  • Hui Li,
  • Guofang Jiang,
  • Chunling Zeng,
  • Henry N. C. Wong and
  • Xiao-Shui Peng

Beilstein J. Org. Chem. 2025, 21, 2173–2201, doi:10.3762/bjoc.21.166

Graphical Abstract
  • ][94]. Electrochemical transformations used renewable and clean electricity as a source of electrons and electron holes to generate radical species, showing several superiorities such as safety, economy, high selectivity, scalability, mild reaction conditions, powerful efficiency, environment-friendly
  • synthesis of cyclic compounds have emerged. The electrochemical functionalization of alkynes was highlighted by Ahmed in 2019 [109], Zhang described radical annulation of 1,n-enynes under photo/electrochemical reaction conditions in 2023 [110], the electrochemical formation of heterocycles was summarized by
  • ] generated [Cp2Fe]+ along with cathodic reduction of MeOH to H2 and MeO− acting as a base. Deprotonation of 1a using MeO− produced the anion A, which underwent single-electron transfer (SET) with [Cp2Fe]+ to give the nitrogen-centered radical B with regeneration of [Cp2Fe] [164][165][166][167][168][169][170
PDF
Album
Review
Published 16 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
PDF
Album
Review
Published 15 Oct 2025
Graphical Abstract
  • and aldehyde 37, which was prepared with 9 steps from commercially available (+)-citronellol, underwent a Reformatsky-type radical addition under the conditions of Et3B/air/Bu3SnH to deliver aldol product [16]. Dehydration of the secondary alcohol gave (E)-38. The HAT radical cyclization [17] of 38 in
PDF
Album
Review
Published 14 Oct 2025

Multicomponent reactions IV

  • Thomas J. J. Müller and
  • Valentyn A. Chebanov

Beilstein J. Org. Chem. 2025, 21, 2082–2084, doi:10.3762/bjoc.21.163

Graphical Abstract
  • a strong emphasis on heterocycle synthesis. Beyond traditional condensation-based approaches, mechanistically innovative crossovers – linking metal catalysis with radical chemistry and, more recently, with photo(redox) catalysis – are opening entirely new avenues for MCR development. Finally, seven
PDF
Album
Editorial
Published 14 Oct 2025
Graphical Abstract
  • with experimental observations. They argued that the DZ intermediate reacts before thermal equilibration. The formation of inverted housane occurs via the pseudo-axial-to-equatorial inversion of DZ. From the axial DZ, the puckered-DR (puc-DR in Scheme 3) radical could be formed resulting in retained
  • housane. From the equatorial DZ (eq-DZ in Scheme 3), the inverted housane can be formed through a homolytic substitution (SH2) process or can be formed via a planar DR (pl-DR in Scheme 3) radical which affords retained and inverted housane [82]. In 2020, Rollins and co-workers also investigated the
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2025

Photochemical reduction of acylimidazolium salts

  • Michael Jakob,
  • Nick Bechler,
  • Hassan Abdelwahab,
  • Fabian Weber,
  • Janos Wasternack,
  • Leonardo Kleebauer,
  • Jan P. Götze and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2025, 21, 1973–1983, doi:10.3762/bjoc.21.153

Graphical Abstract
  • research has demonstrated that NHCs are also capable of stabilizing radical or excited-state species [12][13]. In 2020, our group reported the concept of photo-NHC catalysis where direct excitation of acylazolium intermediates generated from o-toluoyl fluoride substrates with UV-A light resulted in a novel
  • -electron reduction delivering the same stabilized radical C. Beginning with a seminal report by di Rocco and Rovis in 2012 [21], the combination of NHC and photoredox catalysis has recently been the subject of intense research activity [22][23][24][25][26][27][28][29][30]. Employing the latter reductive
  • manifold with carboxylic acid derivatives, numerous coupling processes affording ketone products have been developed. Since the initial report from Scheidt and co-workers using 4-alkyl-substituted Hantzsch esters as coupling partners [31][32][33][34][35][36], several alkyl radical sources have been
PDF
Album
Supp Info
Letter
Published 25 Sep 2025

Asymmetric total synthesis of tricyclic prostaglandin D2 metabolite methyl ester via oxidative radical cyclization

  • Miao Xiao,
  • Liuyang Pu,
  • Qiaoli Shang,
  • Lei Zhu and
  • Jun Huang

Beilstein J. Org. Chem. 2025, 21, 1964–1972, doi:10.3762/bjoc.21.152

Graphical Abstract
  • available has prevented its practical use, and synthesis methods for tricyclic-PGDM methyl ester are required. Based on the utilization of oxidative radical cyclization for the stereoselective construction of the cyclopentanol subunit with three consecutive stereocenters, we describe an asymmetric total
  • synthesis of tricyclic-PGDM methyl ester in 9 steps and 8% overall yield. Keywords: asymmetric total synthesis; oxidative radical cyclization; tricyclic prostaglandin D2 metabolite methyl ester; Introduction Prostaglandins (PGs), a family of hormone-like lipid compounds, are ubiquitous natural products
  • total synthesis of 4 and is required to explore alternative synthetic strategies for PGs and analogues [17]. Biosynthetically, 4 is proposed to arise via a 5-exo-trig biogenetic radical-mediated cyclization (Scheme 1C) [18][19]. Over the past five decades, the Snider oxidative radical reaction has been
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2025

Enantioselective desymmetrization strategy of prochiral 1,3-diols in natural product synthesis

  • Lihua Wei,
  • Rui Yang,
  • Zhifeng Shi and
  • Zhiqiang Ma

Beilstein J. Org. Chem. 2025, 21, 1932–1963, doi:10.3762/bjoc.21.151

Graphical Abstract
  • diastereoselectivity. Compound 288 was then treated with Co(acac)2, 1,1,3,3-tetramethyldisiloxane (TMDSO), and O2 in degassed iPrOH, undergoing a hydrogen-atom-transfer (HAT)-initiated redox radical cascade to give pentacyclic alcohol 289, which was converted to C18/19 diol 290 in two steps. To differentiate the two
PDF
Album
Review
Published 18 Sep 2025

Stereoselective electrochemical intramolecular imino-pinacol reaction: a straightforward entry to enantiopure piperazines

  • Margherita Gazzotti,
  • Fabrizio Medici,
  • Valerio Chiroli,
  • Laura Raimondi,
  • Sergio Rossi and
  • Maurizio Benaglia

Beilstein J. Org. Chem. 2025, 21, 1897–1908, doi:10.3762/bjoc.21.147

Graphical Abstract
  • electrochemical cyclization process. In contrast, more complex and extended heterocyclic electronrich π-systems such as compound 2j was obtained in 35% yield only, presumably as a result of electronic factors affecting the efficiency of the initial radical formation [47]. To further extend the scope of this
  • electrochemically reduced to give the carbon-centered diradical intermediate 5a and the spatial proximity of these two radical centers allows a rapid intramolecular radicalradical coupling resulting in the formation of the desired piperazine 2a. The feasibility of this mechanism is supported by literature
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2025

Chiral phosphoric acid-catalyzed asymmetric synthesis of helically chiral, planarly chiral and inherently chiral molecules

  • Wei Liu and
  • Xiaoyu Yang

Beilstein J. Org. Chem. 2025, 21, 1864–1889, doi:10.3762/bjoc.21.145

Graphical Abstract
  • enantioselectivity. Overall, with the recent rapid advancements of CPA catalysis, along with the utilization of CPA catalysts in asymmetric radical chemistry, transition metal-catalyzed reactions and photoredox chemistry, we envision that CPA catalysts will continue to play a central role in the future asymmetric
PDF
Album
Review
Published 10 Sep 2025

Continuous-flow-enabled intensification in nitration processes: a review of technological developments and practical applications over the past decade

  • Feng Zhou,
  • Chuansong Duanmu,
  • Yanxing Li,
  • Jin Li,
  • Haiqing Xu,
  • Pan Wang and
  • Kai Zhu

Beilstein J. Org. Chem. 2025, 21, 1678–1699, doi:10.3762/bjoc.21.132

Graphical Abstract
  • aliphatic counterparts) due to their predictable electrophilic substitution mechanisms and relatively mild reaction conditions, which enable superior controllability and regioselectivity. Unlike aromatic nitrations that predominantly follow ionic mechanisms, aliphatic systems governed by free radical
  • , scalability for mass production, and broad substrate applicability. Nitration reactions using inorganic nitrating reagents predominantly occur through two distinct mechanistic pathways: free radical and ionic mechanisms. The free radical-mediated nitration pathways using inorganic nitrating reagents remain
  • mechanistic classifications are not absolute – an aliphatic nitration may occasionally proceed via ionic pathways, whereas certain aromatic systems demonstrate free radical-mediated reactivity. A notable example of free radical involvement in aromatic nitration was reported by Murray et al., who elucidated a
PDF
Album
Supp Info
Review
Published 26 Aug 2025

Influence of the cation in hypophosphite-mediated catalyst-free reductive amination

  • Natalia Lebedeva,
  • Fedor Kliuev,
  • Olesya Zvereva,
  • Klim Biriukov,
  • Evgeniya Podyacheva,
  • Maria Godovikova,
  • Oleg I. Afanasyev and
  • Denis Chusov

Beilstein J. Org. Chem. 2025, 21, 1661–1670, doi:10.3762/bjoc.21.130

Graphical Abstract
  • fertilizers in agrochemistry phosphates [20]. Multiple literature reports indicate that changing the alkali metal cations can strongly affect diverse chemical processes including radical reactions [27], electrochemical processes [28], and biomass pyrolysis [29]. However, hypophosphites derived from alkali
  • synthesis of esters of phosphonous or alkylphosphinic acids [33][34][35]. Only a single application of cesium hypophosphite was shown in the literature. CsH2PO2 was prepared in situ and used for formation C–P bond by radical addition to unsaturated carboxylic acids [36 ]To summarize the above, it is crucial
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2025

Photocatalysis and photochemistry in organic synthesis

  • Timothy Noël and
  • Bartholomäus Pieber

Beilstein J. Org. Chem. 2025, 21, 1645–1647, doi:10.3762/bjoc.21.128

Graphical Abstract
  • , and flow chemistry are being harnessed to push the limits of light-driven reactions [36]. Terada and colleagues show in this thematic issue how flow chemistry is used to significantly improve the yield of a π-Lewis acidic metal-catalyzed cyclization–radical addition sequence [37]. Recently, chemists
  • -mediated organic synthesis has also resulted in a renaissance of radical chemistry. Once regarded as “[…] messy, unpredictable, unpromising and essentially mysterious” [39], radical-based methods have become central to modern organic chemistry, spanning applications in the life sciences. The Perspective
PDF
Album
Editorial
Published 18 Aug 2025
Other Beilstein-Institut Open Science Activities