Search results

Search for "Sonogashira" in Full Text gives 200 result(s) in Beilstein Journal of Organic Chemistry.

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
PDF
Album
Review
Published 06 Jan 2025

Synthesis of the 1,5-disubstituted tetrazole-methanesulfonylindole hybrid system via high-order multicomponent reaction

  • Cesia M. Aguilar-Morales,
  • América A. Frías-López,
  • Nadia V. Emilio-Velázquez,
  • Alejandro Islas-Jácome,
  • Angelica Judith Granados-López,
  • Jorge Gustavo Araujo-Huitrado,
  • Yamilé López-Hernández,
  • Hiram Hernández-López,
  • Luis Chacón-García,
  • Jesús Adrián López and
  • Carlos J. Cortés-García

Beilstein J. Org. Chem. 2024, 20, 3077–3084, doi:10.3762/bjoc.20.256

Graphical Abstract
  • ]. Therefore, the key component for this reaction was methanesulfonyl 2-iodoaniline 17, as it has been reported that the use of 2-iodoaniline results in the formation of only the Sonogashira coupling product [29][30]. Moreover, as shown in Scheme 2, this high-order multicomponent protocol yielded fourteen 1,5
  • to obtain the 1,5-disubstituted tetrazole-alkyne 19 is well-documented and hence, it is not herein described in detail [1][26][31]. Thus, based on Pal and co-workers’ proposal [32][33], the second process involves two catalytic cycles: 1) a Sonogashira coupling, and 2) a 5-endo-dig cyclization. The
  • first catalytic cycle begins with the coupling of 1,5-disubstituted tetrazole-alkyne 19 and methanesulfonyl-2-iodoaniline 17 forming the intermediate 23. Following a reductive elimination, the Sonogashira-like product 24 is produced, which then progresses into the second catalytic cycle. In this cycle
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2024

Extension of the π-system of monoaryl-substituted norbornadienes with acetylene bridges: influence on the photochemical conversion and storage of light energy

  • Robin Schulte,
  • Dustin Schade,
  • Thomas Paululat,
  • Till J. B. Zähringer,
  • Christoph Kerzig and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2024, 20, 3061–3068, doi:10.3762/bjoc.20.254

Graphical Abstract
  • molecular system. Herein, we present the synthesis of mono-, bis-, and tris-norbornadiene derivatives with alkynylbenzene and alkynylnaphthalene core units, along with studies of their photochemical properties. The target compounds were synthesized by Sonogashira–Hagihara coupling reactions of 2
  • ; Sonogashira–Hagihara coupling; Introduction The application of sustainable energy storage and supply has become a very important issue both from an economic and ecological point of view. In particular, the global energy demand is continuously expanding because of the increasing population, the development of
  • . Results and Discussion The norbornadiene derivatives 1h–l,n were synthesized by Sonogashira–Hagihara coupling reaction of 2-bromonorbornadiene (1g) [36] with the corresponding arylacetylenes 3a–g (Scheme 2). As an exception, 1,4-bis-norbornadienylnaphthalene (1m) could not be obtained by this route
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2024
Graphical Abstract
  • into the polymer system, further modification and structural analyses were performed [48][74]. The axle end was easily modified by bromination of the benzene ring and successive transition metal–catalyzed cross-coupling reaction, such as Suzuki or Sonogashira coupling (Figure 10A). Furthermore, the
PDF
Album
Review
Published 19 Nov 2024

Synthesis of benzo[f]quinazoline-1,3(2H,4H)-diones

  • Ruben Manuel Figueira de Abreu,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 2708–2719, doi:10.3762/bjoc.20.228

Graphical Abstract
  • Ruben Manuel Figueira de Abreu Peter Ehlers Peter Langer Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany 10.3762/bjoc.20.228 Abstract We report the synthesis of polycyclic uracil derivatives. The method is based on palladium-catalysed Sonogashira–Hagihara
  • known which allow for an individual introduction of substituents at both positions [37][38][51][52][53][54][55][56][57][58][59][60][61]. In our previous work, we developed a new method which enables both positions to be independently functionalised by Sonogashira- and Suzuki–Miyaura cross-coupling
  • of palladium-catalysed Sonogashira–Hagihara and Suzuki–Miyaura cross-coupling reactions (Scheme 1). The final cyclisation step is accomplished by an acid-mediated cycloisomerisation. The synthesis of starting materials 4 was carried out by our previously reported protocol [65]. While compounds 4a–f
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers

  • Yukiko Karuo,
  • Keita Hirata,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 2691–2703, doi:10.3762/bjoc.20.226

Graphical Abstract
  • fluoroenynes via Suzuki–Miyaura and Sonogashira cross-coupling reactions using novel multihalogenated fluorovinyl ethers, which are easily prepared from the reaction between phenols and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane). These reactions make use of the unique structure of multihalogenated
  • fluorovinyl ethers, which contains a reactive bromine atom, to afford a series of fluoroalkenes and fluoroenynes in moderate to high yields. Keywords: fluoroalkenes; fluoroenynes; multihalogenated vinyl ethers; Suzuki–Miyaura cross-coupling reactions; Sonogashira cross-coupling reactions; Introduction
  • chlorine atoms as reported by Hosoya and Niwa et al. In this study, we investigated the synthesis of fluoroalkenes 2 or fluoroenynes 3 by Suzuki–Miyaura or Sonogashira cross-couplings with a key building block 1 (Scheme 1D). Results and Discussion Optimization of the conditions of cross-coupling reactions
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2024

Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents

  • Naoki Takeda,
  • Shuichi Akasaka,
  • Susumu Kawauchi and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2024, 20, 2234–2241, doi:10.3762/bjoc.20.191

Graphical Abstract
  • 5 was prepared from phthalimide (1, Scheme 1). Iodination followed by hydrolysis afforded 4,5-diiodophthalic acid (2) in 46.7% yield. Esterification with 1-hexanol yielded compound 3 in 56.8% yield and the subsequent Sonogashira coupling with trimethylsilylacetylene provided compound 4 in 80.0
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • -carbon alkynoyl building blocks [121][122] could be generated catalytically [123], thereby facilitating reactions under mild reaction conditions and opening novel one-pot pathways for consecutive multicomponent syntheses of pyrazoles. Sonogashira alkynylation of terminal alkynes and (hetero)aroyl
  • solution and in the solid state [127]. Furthermore, even sugar-functionalized pyrazoles have been accessed by this approach [128], and it was readily implemented in a continuous flow reactor [129]. Besides traditional Sonogashira catalyst systems, highly reactive and reusable immobilized Pd-complexes, such
  • and high optical refraction. Functionalized alkynes can alternatively be prepared in situ by a Kumada coupling [133] of aryl iodides and ethynylmagnesium bromide [134]. The Pd catalyst is reused in the subsequent Sonogashira coupling for the synthesis of alkynones in the sense of sequential catalysis
PDF
Album
Review
Published 16 Aug 2024

A new platform for the synthesis of diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions

  • Vitor A. S. Almodovar and
  • Augusto C. Tomé

Beilstein J. Org. Chem. 2024, 20, 1933–1939, doi:10.3762/bjoc.20.169

Graphical Abstract
  • -di(het)aryl groups via Suzuki–Miyaura [26][27][28] or Sonogashira [29][30][31] reactions. In this study, we report a straightforward method to obtain a diverse array of N-substituted DPP derivatives through a two-step process. Firstly, the N-alkylation of Pigment Red 254 (DPP 1) is achieved using
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Synthesis and optical properties of bis- and tris-alkynyl-2-trifluoromethylquinolines

  • Stefan Jopp,
  • Franziska Spruner von Mertz,
  • Peter Ehlers,
  • Alexander Villinger and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1246–1255, doi:10.3762/bjoc.20.107

Graphical Abstract
  • /bjoc.20.107 Abstract Three bis- or tris-brominated 2-trifluoromethylquinolines have been successfully applied in palladium-catalysed Sonogashira reactions, leading to several examples of alkynylated quinolines in good to excellent yields. Optical properties of selected products have been studied by
  • ][23], dyes, preservatives and as ligands in complex chemistry [24][25][26][27]. In the context of our interest in the application of cross-coupling reactions to polyhalogenated heterocycles [28][29][30][31], we studied Sonogashira reactions of brominated 2-trifluoromethylquinolines. The optical
  • bromide gave 4. With quinoline 4 in hand, we studied palladium-catalysed Sonogashira reactions with phenylacetylene (5a). Gratifyingly, our initial test reaction, using Pd(OAc)2 as catalyst with XPhos as ligand, gave bis-alkynylated product 6a in quantitative yield. Reducing the catalyst loading from 5 to
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • , the Li’s group and Zeng and Alper developed two different methods for carrying out a direct carbonylation of indoles with alkynes. Li’s group reported the direct Sonogashira carbonylation coupling reaction of indoles and alkynes catalyzed by Pd/CuI in the presence of iodine as oxidant [71]. The
  • secondary amines. The direct Sonogashira carbonylation coupling reaction of indoles and alkynes via Pd/CuI catalysis reported by Li et al. [71] (top). The Pd-catalyzed regio- and chemoselective direct coupling of indoles/CO/alkynyl carboxylates developed by Zeng and Alper [72] (bottom). Synthesis of indole
PDF
Album
Review
Published 30 Apr 2024

Synthesis and properties of 6-alkynyl-5-aryluracils

  • Ruben Manuel Figueira de Abreu,
  • Till Brockmann,
  • Alexander Villinger,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 898–911, doi:10.3762/bjoc.20.80

Graphical Abstract
  • Abstract The development of a new and straightforward chemoselective method for the synthesis of uracil-based structures by combining Suzuki–Miyaura and Sonogashira–Hagihara cross-coupling is reported. The methodology was applied to synthesize a series of novel compounds. The tolerance of the combination
  • this work, we report a new chemoselective method for the synthesis of a series of hitherto unknown uracil-based compounds by combining Suzuki–Miyaura and Sonogashira–Hagihara cross-coupling [60][61]. The method is designed to be flexible and could also be used to synthesize other structural motifs
  • starting with commercially available 6-chloro-1,2-dimethyluracil (1), as depicted in Scheme 1. Subsequently, 5-bromo-6-chloro-1,3-dimethyluracil (2) was synthesized by brominating the starting material. The single Sonogashira–Hagihara cross-coupling afforded 3a–j and, by a two-fold approach, 4a–h could be
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • Suzuki–Miyaura and Sonogashira couplings on 4aa or 4ba afforded the desired products 5 and 6 in 47% and 74% yields, respectively. In the former case, the C–Br bond on the pyrazole moiety remained intact, highlighting the superior leaving group ability of the BX group. Cu-catalyzed Ullmann coupling
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024
Graphical Abstract
  • through scanning tunneling microscopy [85]. For TCBDs bearing unsubstituted anilino (p-H2NC6H4–) groups, their conversion into the p-iodophenyl derivatives via the Sandmeyer reaction and subsequent post-functionalization via the Suzuki and Sonogashira coupling reactions are achieved [86]. In the reaction
PDF
Album
Review
Published 22 Jan 2024

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • variety of reactions; that are, phosphite- or Lawesson’s reagent-mediated olefination reactions (to introduce DTF motifs), Ramirez/Corey–Fuchs dibromo-olefinations followed by Sonogashira couplings (to introduce enediynes motifs), and Knoevenagel condensations (to introduce the vinylic diester motif). By
  • various elaborate systems [24][25][26][27]. Next, we wanted to explore IF-DTFs as motifs for acetylenic scaffolding (Scheme 4). Starting from IF-DTF building block 6, dibromo-olefinated compound 18 was obtained by a Ramirez/Corey–Fuchs reaction. Two-fold Sonogashira couplings with trimethylsilylacetylene
  • , ethynylbenzene, or 4-ethynylbenzonitrile yielded compounds 19–21, while two-fold Sonogashira coupling with ((2-ethynylphenyl)ethynyl)triisopropylsilane resulted in compound 22. Desilylation of the alkynes of compound 22 with tetrabutylammonium fluoride (TBAF) and subsequent intramolecular Glaser–Hay coupling of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Biphenylene-containing polycyclic conjugated compounds

  • Cagatay Dengiz

Beilstein J. Org. Chem. 2023, 19, 1895–1911, doi:10.3762/bjoc.19.141

Graphical Abstract
  • through Sonogashira cross-coupling reactions with alkynes featuring different protecting groups such as TIPS, TES, and TIBS. Scheme 7 illustrates the derivatization process using one of the chosen examples, specifically the TIPS group. Accordingly, the cross-coupling products 33a–c were obtained in yields
  • selectively synthesize compound 87 through a hybrid approach involving the integration of both solution and surface chemistry techniques [53]. The key compound 96 to be used in the synthesis of POA 87 was synthesized in two steps. In the first step, 94 was obtained using a double Sonogashira cross-coupling
PDF
Album
Review
Published 13 Dec 2023

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • -dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of
  • )-4-(4-bromophenyl)pyridine-3,5-carbonitrile (4) was obtained by the interaction of 3,6-di-tert-butyl-9H-carbazole with compound 3 in THF/DMF solution. The ethynylphenyl-substituted pyridine 5 was synthesized by Sonogashira coupling of 4 with ethynyltrimethylsilane in the presence of PdCl2(PPh3)2 and
  • copper(I) iodide in DMF/DIPEA solution at 55 °C with subsequent desilylation with potassium carbonate. Finally, butadiyne 6 was prepared by a homocoupling reaction of 5 with 80% yield. Derivatives containing two dicyanopyridyl moieties, 7 and 8, were prepared starting with a Sonogashira coupling of
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • synthesis of 1,2,5-trisubstituted 7-azaindoles [34]. Inspired by the coupling–cyclization–alkylation sequence and the stepwise Sonogashira coupling–cyclization–iodination protocol to give valuable 3-iodoindoles by Amjad and Knight [35], we reasoned that the interception by an electrophilic iodination step
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • )benzene through Co-catalyzed cyclotrimerization in a 45% yield. Then monoiodide NG 49 was obtained through oxidative cyclodehydronation in a high yield. From the heptagon-containing NG 49, Sonogashira coupling with p-tert-butylphenylacetylene (50) afforded 51 in a quantitative yield. Subsequent Diels
  • -workers synthesized a helical bilayer NG by using helicene in the initial step as the linker to fuse two HBC units [48]. As shown in Scheme 6, starting from the helical alkyne 54, Sonogashira coupling with 4-tert-butyliodobenzene (55) afforded structure 56 in a 77% yield. Subsequent Diels–Alder reaction
  • Sonogashira cross-coupling reaction of phenylacetylene 50 and 1,4-dibromotetrafluorobenzene. The resulting bis[aryl(ethynyl)]tetrafluorobenzene 59 was able to undergo a 2-fold [4 + 2] cycloaddition reaction with cyclopentadienone 2, affording polyaromatic 60 in a 70% yield. The final step was the Scholl
PDF
Album
Review
Published 30 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • relies on a double Sonogashira coupling [(i) and (iii)], reduction (iv), and bromination (v), followed by Buchwald–Hartwig amination (viii) (Scheme 14). While interesting, the reaction has limited substrate scope due to the reliance on a late-stage bromination. To achieve the correct ortho-bromo
  • towards dibenzo[b,f]azepines and other dibenzo[b,f]heteropines, and the functionalisation thereof. Modern metal-catalyzed methods to introduce the C–C bridge include the Heck reaction, the Sonogashira reaction, Suzuki coupling and ring-closing metathesis, whereas Buchwald–Hartwig type reactions and Ullman
PDF
Album
Review
Published 22 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • –Stephens reaction, method A) and arylacetylenes (Sonogashira reaction, method B). In all cases, even when using a small excess of 8, in addition to the desired monoalkynyl derivative 7, a double alkynylation product 9 was formed (Table 1). The Sonogashira coupling was somewhat more efficient, yielding
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • esterification reactions gave the ester 33 which was submitted to a Sonogashira coupling reaction with propargyl alcohol to give the advanced intermediate 34 [34]. Partial hydrogenation of the triple bond in 34 using Lindlar’s catalyst led to the cis-allylic alcohol 35 and subsequent ester hydrolysis led to the
PDF
Album
Review
Published 29 Mar 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • ]) are linear syntheses involving a great number of steps and purifications as well as cryogenic temperatures. Moreover, the introduction of the C=C unsaturation is achieved via a Wittig reaction or a Pd-catalyzed Sonogashira cross-coupling followed by a reduction by a borane reagent, methods which lead
PDF
Album
Perspective
Published 14 Feb 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • reported by Pitts and collaborators. This study achieves full removal of metal species after common homogenous catalytic reactions such as a Suzuki–Miyaura reaction, Sonogashira reaction or hydrogenation mediated by Wilkinson’s catalyst [84]. Other interesting examples to remove transition metals in
PDF
Album
Perspective
Published 16 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • -membered triflate 71 was synthesized from diketone 26 in 5 steps and 37% overall yield. Both fragments were assembled by a Sonogashira cross-coupling, affording 72 in 72% yield. In a first attempt, TBS protection was considered on the bicylo[3.2.1]octane. However, later in the strategy, the deprotection
PDF
Album
Review
Published 12 Dec 2022
Other Beilstein-Institut Open Science Activities