Search results

Search for "13C" in Full Text gives 1939 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Tunable full-color dual-state (solution and solid) emission of push–pull molecules containing the 1-pyrindane moiety

  • Anastasia I. Ershova,
  • Sergey V. Fedoseev,
  • Konstantin V. Lipin,
  • Mikhail Yu. Ievlev,
  • Oleg E. Nasakin and
  • Oleg V. Ershov

Beilstein J. Org. Chem. 2024, 20, 3016–3025, doi:10.3762/bjoc.20.251

Graphical Abstract
  • and compound characterization data, solvatochromic studies for compound 1с, titration data, and 1H and 13C NMR spectra for compounds 1a–i. Funding This work was performed within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation (project no. FEGR
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Synthesis of fluorinated acid-functionalized, electron-rich nickel porphyrins

  • Mike Brockmann,
  • Jonas Lobbel,
  • Lara Unterriker and
  • Rainer Herges

Beilstein J. Org. Chem. 2024, 20, 2954–2958, doi:10.3762/bjoc.20.248

Graphical Abstract
  • Information File 42: Experimental procedures, characterization data of all products, and copies of 1H, 13C, and 19F NMR spectra. Acknowledgements We thank Dr. Claus Bier for the help with the HPLC–ESIMS measurements.
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2024

gem-Difluorovinyl and trifluorovinyl Michael acceptors in the synthesis of α,β-unsaturated fluorinated and nonfluorinated amides

  • Monika Bilska-Markowska,
  • Marcin Kaźmierczak,
  • Wojciech Jankowski and
  • Marcin Hoffmann

Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247

Graphical Abstract
  • experimental procedures, DFT calculations, characterization data, and copies of 1H, 13C, 19F NMR and 1H−13C HSQC spectra. Acknowledgements The calculations were performed in the Poznan Supercomputing and Networking Center.
PDF
Album
Supp Info
Letter
Published 15 Nov 2024

The charge transport properties of dicyanomethylene-functionalised violanthrone derivatives

  • Sondos A. J. Almahmoud,
  • Joseph Cameron,
  • Dylan Wilkinson,
  • Michele Cariello,
  • Claire Wilson,
  • Alan A. Wiles,
  • Peter J. Skabara and
  • Graeme Cooke

Beilstein J. Org. Chem. 2024, 20, 2921–2930, doi:10.3762/bjoc.20.244

Graphical Abstract
  • solid (440 mg, 60%). 1H NMR (400 MHz, CDCl3) δ 8.79 (d, J = 8.0 Hz, 2H), 8.65 (d, J = 8.1 Hz, 2H), 8.56 (d, J = 7.6 Hz, 2H), 8.40 (d, J = 7.8 Hz, 2H), 8.30 (s, 2H), 7.82 (t, J = 7.6 Hz, 2H), 7.62 (t, J = 7.4 Hz, 2H), 4.05 (m, 4H), 1.77 (m, 2H), 1.38 (m, 16H), 0.93–0.51 (m, 12H); 13C NMR (100 MHz, CDCl3
  • (br, 4H), 1.94–1.80 (m, 4H), 1.34 (d, J = 90.2 Hz, 20H), 0.82 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 183.2, 156.3, 135.6, 134.5, 133.2, 131.0, 129.4, 128.6, 128.3, 127.7, 127.5, 127.1, 123.6, 123.2, 122.7, 117.2, 113.5, 69.8, 31.9, 29.9, 29.6, 29.5, 26.2, 22.8, 14.2; HRESIMS (m/z): [M + Na
  • Hz, 2H), 8.57 (d, J = 7.7 Hz, 2H), 8.39 (d, J = 8.0 Hz, 2H), 8.30 (s, 2H), 7.81 (t, J = 7.4 Hz, 2H), 7.62 (t, J = 7.6 Hz, 2H), 4.26 (s, 4H), 1.92–1.72 (m, 4H), 1.55–1.02 (m, 36H), 0.86 (t, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 183.2, 156.4, 135.6, 134.5, 133.2, 131.1, 129.5, 128.6, 128.3, 127.8
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2024

Synthesis of pyrrole-fused dibenzoxazepine/dibenzothiazepine/triazolobenzodiazepine derivatives via isocyanide-based multicomponent reactions

  • Marzieh Norouzi,
  • Mohammad Taghi Nazeri,
  • Ahmad Shaabani and
  • Behrouz Notash

Beilstein J. Org. Chem. 2024, 20, 2870–2882, doi:10.3762/bjoc.20.241

Graphical Abstract
  • product compared to the substitution of phenyl (Scheme 4, 6c). Furthermore, n-butyl isocyanide was used to increase the variety of products and the n-butyl-substituted products 6f–h were obtained with 72–78% yield . All the products were characterized by 1H NMR, 13C NMR, and infrared spectroscopy, and
  • . The signal at δ = 3.42 is the NH group. All the protons of the aromatic rings are located from δ = 7.10 to 7.99. In its 13C NMR spectrum, all of the carbon signals appear at δ = 158.3, 152.5, 134.7, 134.2, 133.9, 133.2, 130.8, 130.4, 129.2, 129.1, 129.0 128.9, 128.4, 127.4, 125.8, 122.6, 121.1, 120.6
  • δ = 4.65 and δ = 5.84 ppm corresponding to hydrogen I and hydrogen II. Remarkably, at higher temperatures (85 °C), the rapid inversion of the seven-membered ring results in it being observed as a single structure on the 1H NMR time scale (see Figure 3, spectrum F) [19][47][48]. Furthermore, 13C NMR
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2024

Synthesis of tricarbonylated propargylamine and conversion to 2,5-disubstituted oxazole-4-carboxylates

  • Kento Iwai,
  • Akari Hikasa,
  • Kotaro Yoshioka,
  • Shinki Tani,
  • Kazuto Umezu and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2024, 20, 2827–2833, doi:10.3762/bjoc.20.238

Graphical Abstract
  • . Ltd. and purified by distillation. 1H and 13C{1H} NMR spectra were recorded on a JEOL JMN-ECZ400S spectrometer (400 MHz and 100 MHz, respectively) using TMS as internal standard. The assignments of the 13C{1H} NMR signals were reaffirmed by DEPT experiments. IR spectra were recorded with a JASCO FT/IR
  • MHz, CDCl3, δ) 7.78 (d, J = 8.0 Hz, 2H), 7.65 (br s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.32–7.25 (m, 5H), 4.37 (q, J = 7.2 Hz, 4H), 2.40 (s, 3H), 1.35 (t, J = 7.2 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3, δ) 165.6 (C), 165.3 (C), 142.8 (C), 130.2 (C), 129.4 (CH), 128.9 (CH), 128.2 (CH), 127.5 (CH), 122.0 (C
  • , 92.2 mg, 0.29 mmol, 82% yield) as colorless oil. 1H NMR (400 MHz, CDCl3, δ) 7.88 (d, J = 8.4 Hz, 2H), 7.35–7.22 (m, 7H), 4.45 (s, 2H), 4.42 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3, δ) 162.0 (C), 160.7 (C), 157.6 (C), 141.8 (C), 136.4 (C), 129.4 (CH
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Synthesis and antimycotic activity of new derivatives of imidazo[1,2-a]pyrimidines

  • Dmitriy Yu. Vandyshev,
  • Daria A. Mangusheva,
  • Khidmet S. Shikhaliev,
  • Kirill A. Scherbakov,
  • Oleg N. Burov,
  • Alexander D. Zagrebaev,
  • Tatiana N. Khmelevskaya,
  • Alexey S. Trenin and
  • Fedor I. Zubkov

Beilstein J. Org. Chem. 2024, 20, 2806–2817, doi:10.3762/bjoc.20.236

Graphical Abstract
  • imidazole nucleophilic center not involved in the first step. This process leads to the formation of alternative final products: imidazo[1,2-a]imidazoles 10 and 12, imidazo[1,5-a]pyrimidines 4, 5, 11 and 14, and imidazo[1,2-a]diazines 13 and 15. The analysis of the spectral data (1H and 13C NMR, 2D NMR
  • unambiguous assignment of the signals for the methine and methylene groups of compounds 4 and 5 was carried out based on the correlations found in the NOESY 1H,1H and HMBC 1H,13C spectra. As an example, the key correlation interactions for compounds 4d and 5d are depicted in Figure 3. Thus, in the NOESY
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2024

C–C Coupling in sterically demanding porphyrin environments

  • Liam Cribbin,
  • Brendan Twamley,
  • Nicolae Buga,
  • John E. O’ Brien,
  • Raphael Bühler,
  • Roland A. Fischer and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2024, 20, 2784–2798, doi:10.3762/bjoc.20.234

Graphical Abstract
  • the existence of this structure in solution was obtained from VT-NMR studies (Figure S51 and Figure S52 in Supporting Information File 1), with asymmetry observed in the β-ethyl CH3 resonances δH = 0.58 and 0.73 ppm and peak broadening in both the aromatic region and the {1H}13C NMR spectra
  • borylation of porphyrin 13 to yield 46. Mean geometrical parameters of OET-meta/para-ArylPP and out-of-plane and in-plane distortion magnitudes. Supporting Information Supporting Information File 9: Experimental methods, synthetic procedures, 1H, 11B and 13C NMR, VT-NMR, UV–vis, IR, HRMS (m/z)-APCI and HRMS
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Access to optically active tetrafluoroethylenated amines based on [1,3]-proton shift reaction

  • Yuta Kabumoto,
  • Eiichiro Yoshimoto,
  • Bing Xiaohuan,
  • Masato Morita,
  • Motohiro Yasui,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2024, 20, 2776–2783, doi:10.3762/bjoc.20.233

Graphical Abstract
  • reaction mechanism. Investigation of the reaction conditions. Supporting Information Supporting Information File 3: Full experimental details, 1H, 13C, 19F NMR spectra of 16a–g and 23a–g, and HPLC charts of racemic as well as chiral compounds 23a–g. Supporting Information File 4: Crystallographic
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • shuttling (Scheme 53, 51a–k). Furthermore, they established a Cu-catalyzed asymmetric multicomponent reaction for yne-allylic substitution, seamlessly integrating 13C-labeled CO2 into enantiomerically pure products (Scheme 54, 51a, 51c, 51f, 51g). This methodology enabled the synthesis of diverse, high
PDF
Album
Review
Published 31 Oct 2024

Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light

  • Francesco Gambuti,
  • Jacopo Pizzorno,
  • Chiara Lambruschini,
  • Renata Riva and
  • Lisa Moni

Beilstein J. Org. Chem. 2024, 20, 2722–2731, doi:10.3762/bjoc.20.230

Graphical Abstract
  • laboratory, and the results will be reported in due course. Experimental General methods 1H, 13C and 19F NMR spectra were recorded on a JEOL 400 spectrometer (at 400 MHz, 101 MHz and 376 MHz, respectively). Unless otherwise stated, NMR spectra were recorded using residual solvent as the internal standard; 1H
  • NMR: TMS = 0.00; (CD3)2SO = 2.50; and 13C NMR: CDCl3 = 77.16; (CD3)2SO = 39.52. Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constants (Hz) and integration. Data for 13C NMR spectra are reported in terms of chemical shift (δ ppm). Interpretation of
  • without further purification. Graphene oxide (GO) was purchased from Graphenea. All products were characterized by 1H,13C, 19F (when fluorine is present) NMR, IR and HRMS. General procedure for the one-pot synthesis of spiro[indole-isoquinoline] 3a: A solution of N-phenyltetrahydroisoquinoline (1 equiv
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2024

Synthesis of benzo[f]quinazoline-1,3(2H,4H)-diones

  • Ruben Manuel Figueira de Abreu,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 2708–2719, doi:10.3762/bjoc.20.228

Graphical Abstract
  • , bathochromically shifted absorption and emission spectra with elevated extinction coefficients and quantum yields up to 71%. Further studies will be directed to the synthesis to polycyclic, π-conjugated uracil derivatives. Experimental General information Nuclear magnetic resonance spectra (1H/13C/19F NMR) were
  • –7.41 (m, 2H), 7.41–7.36 (m, 2H), 7.34–7.29 (m, 2H), 7.24–7.21 (m, 2H), 3.71 (s, 3H), 3.45 (s, 3H); 13C {1H} NMR (126 MHz, chloroform-d) δ 162.1, 151.6, 134.3, 133.2, 131.9, 130.9, 130.5, 128.7, 128.3, 128.0, 120.7, 119.0, 104.2, 81.0, 34.6, 28.7; EIMS (70 eV) m/z (%): 315 (100, M+), 258 (26), 230 (67
  • ) δ −113.3, −106.3; 13C {1H} NMR (126 MHz, chloroform-d) δ 163.9 (d, J = 253.7 Hz), 162.7 (d, J = 247.8 Hz), 162.0, 151.5, 134.3, 134.1 (d, J = 9.0 Hz), 132.8 (d, J = 8.2 Hz), 129.1 (d, J = 3.3 Hz), 117.9, 116.6 (d, J = 3.6 Hz), 116.4 (d, J = 22.4 Hz), 115.1 (d, J = 21.6 Hz), 103.3, 80.7, 34.7, 28.7
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers

  • Yukiko Karuo,
  • Keita Hirata,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 2691–2703, doi:10.3762/bjoc.20.226

Graphical Abstract
  • and 3 as new fluorine-containing building blocks. Experimental General information 1H NMR, 19F NMR, and 13C NMR spectra were recorded on JEOL ECZ 400S spectrometers. Chemical shifts of 1H NMR are reported in ppm from tetramethylsilane (TMS) as an internal standard. Chemical shifts of 13C NMR are
  • purified by column chromatography and preparative TLC (hexane only), and obtained in 96% yield (122.0 mg) as a pale yellow oil; 1H NMR (400 MHz, CDCl3) δ 7.04–7.22 (m, 2H), 7.26–7.50 (m, 6H), 7.55–7.69 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 101.4 (d, J = 30.9 Hz), 102.5 (d, J = 48.0 Hz), 116.5 (d, J = 3.8 Hz
  • , J = 8.0 Hz, 2H), 7.07–7.15 (m, 2H), 7.16–7.23 (m, 1H) , 7.33–7.42 (m, 1H); 13C NMR (100 MHz, CDCl3) δ −0.36, −0.26, 85.2 (d, J = 44.8 Hz), 85.6 (d, J = 53.3 Hz), 94.5 (d, J = 47.8 Hz), 94.6 (d, J = 43.5 Hz), 103.7 (d, J = 63.4 Hz), 103.8 (d, J = 66.3 Hz), 117.2, 117.3, 125.2, 125.3, 130.0, 130.1
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2024

Transition-metal-free decarbonylation–oxidation of 3-arylbenzofuran-2(3H)-ones: access to 2-hydroxybenzophenones

  • Bhaskar B. Dhotare,
  • Seema V. Kanojia,
  • Chahna K. Sakhiya,
  • Amey Wadawale and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2024, 20, 2655–2667, doi:10.3762/bjoc.20.223

Graphical Abstract
  • characterized using 1H NMR, 13C NMR, FTIR spectroscopy, and elemental analysis. Next, in a model experiment, we carried out the decarbonylation–oxidation reaction of 5-methyl-3-phenylbenzofuran-2(3H)-one (3ba) using different bases in different solvents (Table 1) under open atmospheric conditions. In the
  • over anhydrous Na2SO4. FTIR spectra were recorded as films with a Bruker Tensor II spectrophotometer. The 1H and 13C NMR spectra were recorded with a Varian 500 MHz NMR spectrometer, and were processed using Bruker TOPSPIN software. Melting points (mp) were measured on a Büchi B-540 apparatus. X-ray
  • File 10: Characterization data of compounds 3aa–ma, 4aa–ma, and 5. 1H and 13C NMR spectra of 3aa–ma, 4aa–ma, and 5; single crystal data of 4ja, 4fb, and 4ma; UV–vis absorption spectra and optical properties of 4aa–ma. Acknowledgements The authors acknowledge Dr. Sudip Gorai, BARC, for his help in
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2024

The scent gland composition of the Mangshan pit viper, Protobothrops mangshanensis

  • Jonas Holste,
  • Paul Weldon,
  • Donald Boyer and
  • Stefan Schulz

Beilstein J. Org. Chem. 2024, 20, 2644–2654, doi:10.3762/bjoc.20.222

Graphical Abstract
  • ) and C-6-methyl (1.56 ppm) and was assigned as the E-diastereomer. This assignment is further supported by the 13C NMR spectra. The major diastereomer shows C-7 at 39.7 ppm, a typical value for (E)-configured aliphatic chains with allylmethyl groups [29], while the (Z)-isomers show values around 30 ppm
  • column chromatography [28]. Yellow oil: 1.95 g (45% over 2 steps); 1H NMR (CDCl3, 300 MHz) δ 9.64 (s, 1H), 3.68 (s, 3H), 2.40 (m, 3H), 2.07 (m, 1H), 1.70 (m, 1H), 1.13 (d, J = 7 Hz, 3H); 13C NMR (CDCl3, 75 MHz) δ 200.9, 173.4, 51.6, 45.5, 31.2, 25.3, 13.2; EIMS (70 eV) m/z (%): 116 (10), 113 (15), 112
  • (18%); 1H NMR (CDCl3, 500 MHz) δ 4.83 (d, J = 12 Hz, 1H), 3.65 (s, 3H), 2.40–2.30 (m, 1H), 2.3–2.2 (m, 2H), 2.05–1.90 (m, 2H), 1.66 (d, J = 13 Hz, 1.2H), 1.56 (d, J = 13 Hz, 1.8H), 1.38–1.21 (m, 10H), 0.93 (d, J = 7 Hz, 1.2H), 0.93 (d, J = 1.8 Hz, 1.8H), 0.88 (t, J = 14 Hz, 3H); 13C NMR (CDCl3, 125
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2024

Efficient modification of peroxydisulfate oxidation reactions of nitrogen-containing heterocycles 6-methyluracil and pyridine

  • Alfiya R. Gimadieva,
  • Yuliya Z. Khazimullina,
  • Aigiza A. Gilimkhanova and
  • Akhat G. Mustafin

Beilstein J. Org. Chem. 2024, 20, 2599–2607, doi:10.3762/bjoc.20.219

Graphical Abstract
  • classes. Experimental 1H and 13C NMR spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 500.13 MHz (1H) and 125.73 MHz (13C) with 5 mm QNP sensors at a constant sample temperature of 298 K. The solvents were DMSO-d6, D2O, CDCl3 and the internal standard was SiMe4. Chemical shifts in the
  • 13C and 1H NMR spectra are given in parts per million (ppm). Elemental analyses were performed on a CHNS Euro-EA 3000 automatic analyzer. Melting points were determined on combinated Boetius tables. IR spectra were obtained on an IR Prestige-21 Shimadzu spectrophotometer in KBr pellets. Freshly
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Synthesis and cytotoxicity studies of novel N-arylbenzo[h]quinazolin-2-amines

  • Battini Veeraiah,
  • Kishore Ramineni,
  • Dabbugoddu Brahmaiah,
  • Nangunoori Sampath Kumar,
  • Hélène Solhi,
  • Rémy Le Guevel,
  • Chada Raji Reddy,
  • Frédéric Justaud and
  • René Grée

Beilstein J. Org. Chem. 2024, 20, 2592–2598, doi:10.3762/bjoc.20.218

Graphical Abstract
  • bromides and other reagents were used as they were received from commercial suppliers, unless otherwise noted. THF and Et2O were dried over sodium-benzophenone and distilled prior to use. 1H NMR spectra were recorded at 300 and 400 MHz, and 13C NMR spectra at 75 and 100 MHz, in CDCl3 or DMSO-d6 using TMS
  • , filtered and dried to get compound 3 as a brown colored solid (63% yield). 1H NMR (400 MHz, DMSO-d6, δ ppm) 9.06 (s, 1H), 8.91 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.76–7.64 (m, 3H), 7.56 (d, J = 8.8 Hz, 1H), 6.99 (br s, 2H); 13C NMR (75 MHz, DMSO-d6, δ ppm) 162.18, 161.31, 152.03, 136.05, 130.07
  • , 129.07, 128.36, 126.72, 124.51, 124.38, 122.67, 116.44; 1H-13C NMR ((300, 75) MHz, DMSO-d6, δ ppm) (9.09 161.23), (8.95 124.31), (7.95 128.17), (7.76 129.93), (7.69 126.77), (7.61 124.66), (7.58 122.55); FTIR (KBr 1%, cm−1) ν̃: 3440, 3316, 3192, 1625, 1611, 1598, 1571, 1496, 1471, 1460, 1410, 801, 763
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2024

Base-promoted cascade recyclization of allomaltol derivatives containing an amide fragment into substituted 3-(1-hydroxyethylidene)tetronic acids

  • Andrey N. Komogortsev,
  • Constantine V. Milyutin and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 2585–2591, doi:10.3762/bjoc.20.217

Graphical Abstract
  • formation of various unidentified byproducts. The obtained tetronic acids 4 are solid crystalline compounds, whose structure was proved by 1H, 13C NMR spectroscopy and high-resolution mass spectrometry. The 1H NMR spectra of the synthesized products contain characteristic signals of protons of the methyl
  • solvent signals (DMSO-d6: 2.50 ppm (1H NMR) and 39.52 ppm (13C NMR)). High-resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The melting points were determined on a Kofler hot stage apparatus. A magnetic stirrer IKA C-MAG HS 7 was used for
  • -ylidene)furan-2,4(3H,5H)-dione (4a). Pale yellow powder; yield 62% (0.25 g); mp 121–123 °C; 1H NMR (300 MHz, DMSO-d6) δ 7.31–7.13 (m, 5H), 4.34 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 7.6 Hz, 2H), 2.56–2.48 (m, 2H in DMSO), 2.46 (s, 3H), 2.14 (t, J = 11.8 Hz, 2H), 1.64–1.54 (m, 3H), 1.41–1.09 (m, 5H); 13C NMR
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2024

Transition-metal-free synthesis of arylboronates via thermal generation of aryl radicals from triarylbismuthines in air

  • Yuki Yamamoto,
  • Yuki Konakazawa,
  • Kohsuke Fujiwara and
  • Akiya Ogawa

Beilstein J. Org. Chem. 2024, 20, 2577–2584, doi:10.3762/bjoc.20.216

Graphical Abstract
  • without further purification. All solvents were used without distillation. Triarylbismuthines 1 were synthesized according to the previously reported procedures [62]. 1H, 13C{1H}, and 11B NMR spectra were recorded in CDCl3 using a Bruker AVANCE III HD 500 spectrometer at 500, 126, and 160 MHz
  • , respectively. 1H chemical shifts are reported in ppm relative to Me4Si using the solvent residual as the internal standard (δ = 7.26 ppm for chloroform). 13C chemical shifts are reported in ppm relative to Me4Si, referenced to the resonances of CDCl3 (δ = 77.2 ppm). 11B chemical shifts are reported in ppm
  • File 138: Investigation of the boron residue in the crude mixture by 11B NMR measurement, characterization data of the compounds, and copies of 1H NMR and 13C{1H} NMR spectra. Acknowledgements We acknowledged Dr. Tran Dat Phuc and Mr. Soichiro Mita (Osaka Prefecture University) for their initial
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2024

Anion-dependent ion-pairing assemblies of triazatriangulenium cation that interferes with stacking structures

  • Yohei Haketa,
  • Takuma Matsuda and
  • Hiromitsu Maeda

Beilstein J. Org. Chem. 2024, 20, 2567–2576, doi:10.3762/bjoc.20.215

Graphical Abstract
  • assemblies, 2+-BF4− was further treated with NaPF6, LiB(C6F5)4, and NaPCCp for the ion-pair metathesis to afford ion pairs 2+-X− (X− = PF6−, B(C6F5)4−, and PCCp−) in 44–68% yields. The obtained ion pairs were characterized using 1H, 13C, and 19F nuclear magnetic resonance (NMR) and matrix-assisted laser
  • , 0.209 mmol, 19%) as a red solid. Rf 0.33 (MeOH/EtOAc/CH2Cl2 1:2:8); 1H NMR (600 MHz, CDCl3, 20 °C) δ (ppm) 7.68 (t, J = 8.4 Hz, 3H, TATA-H), 7.51 (t, J = 7.8 Hz, 3H, Ar-H), 7.44 (d, J = 7.8 Hz, 6H, Ar-H), 6.37 (d, J = 8.4 Hz, 6H, TATA-H), 2.10 (s, 18H, CH3); 13C NMR (151 MHz, CDCl3, 20 °C) δ (ppm
  • , TATA-H), 2.11 (s, 18H, CH3); 13C NMR (151 MHz, CDCl3, 20 °C) δ (ppm) 142.40, 140.77, 138.59, 136.46, 135.03, 130.73, 130.69, 110.66, 106.15, 17.61; 19F NMR (564 MHz, CDCl3, 20 °C) δ (ppm) −77.26 (d, J = 712 Hz, 6F); UV–vis (CH3CN), λmax, nm (ε, 105 M−1 cm−1): 272 (1.30), 337 (0.07), 349 (0.09), 523
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2024

Visible-light-mediated flow protocol for Achmatowicz rearrangement

  • Joachyutharayalu Oja,
  • Sanjeev Kumar and
  • Srihari Pabbaraja

Beilstein J. Org. Chem. 2024, 20, 2493–2499, doi:10.3762/bjoc.20.213

Graphical Abstract
  • corresponding products (3o, 3p) in good yields. All the products obtained were characterized by 1H NMR, 13C NMR and mass spectrometry techniques. A plausible catalytic cycle has been postulated based on a literature study [13], and is shown in Figure 2. With the exposure of photocatalyst to sunlight/LED light
PDF
Album
Supp Info
Letter
Published 08 Oct 2024

Facile preparation of fluorine-containing 2,3-epoxypropanoates and their epoxy ring-opening reactions with various nucleophiles

  • Yutaro Miyashita,
  • Sae Someya,
  • Tomoko Kawasaki-Takasuka,
  • Tomohiro Agou and
  • Takashi Yamazaki

Beilstein J. Org. Chem. 2024, 20, 2421–2433, doi:10.3762/bjoc.20.206

Graphical Abstract
  • . However, the comparison of their specific region of the 13C NMR charts and sharp peaks readily led us to qualitative understanding of the high purity of 11a-D possibly as a single diastereomer (Figure 3). Conclusion As described above, we have succeeded in the facile preparation of 2,3-epoxyesters 2 with
  • column chromatography using AcOEt/Hex 1:20 as an eluent, 0.2117 g (0.86 mmol) of the title compound (86% yield) were isolated. Rf 0.52 (Hex/AcOEt 5:1); 1H NMR (300.40 MHz, CDCl3) δ 3.71–3.76 (m, 2H), 5.21 (d, J = 12.3 Hz, 1H), 5.28 (d, J = 12.3 Hz, 1H), 7.34–7.44 (m, 5H); 13C NMR (75.45 MHz, CDCl3) δ
  • –6.81 (m, 4H), 7.26–7.36 (m, 5H); 13C NMR (75.45 MHz, acetone-d6) δ 55.5, 59.3, 67.9, 70.0 (q, J = 30.2 Hz), 114.8, 117.7, 124.1 (q, J = 283.5 Hz), 128.5, 128.6, 128.7, 134.4, 139.5, 154.3, 170.2; 19F NMR (282.65 MHz, CDCl3) δ −76.83 (d, J = 9.0 Hz); IR (KBr) ν: 3454, 3315, 2955, 2924, 2854, 2360, 1741
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2024

Efficient one-step synthesis of diarylacetic acids by electrochemical direct carboxylation of diarylmethanol compounds in DMSO

  • Hisanori Senboku and
  • Mizuki Hayama

Beilstein J. Org. Chem. 2024, 20, 2392–2400, doi:10.3762/bjoc.20.203

Graphical Abstract
  • a novel, efficient, facile, and green organic method. Experimental General information 1H (400 MHz) and 13C (100 MHz) NMR spectra were recorded in CDCl3 or DMSO-d6 with a JEOL JNM-ECS400 FT NMR spectrometer. The chemical shifts δ are given in ppm with tetramethylsilane (δ 0 ppm) or DMSO (δ 2.50 ppm
  • ) for 1H and CDCl3 (δ 77.0 ppm) or DMSO-d6 (δ 39.5 ppm) for 13C as internal references. J values are in Hz. Peak multiplicities are given as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Reagents and solvents, including anhydrous DMSO, are commercially available and
  • ) [36], and phenyl(thiophen-2-yl)acetic acid (2l) [30] are known compounds, and their spectral data were good agreement with previously reported values. Spectral data of the products 2 Diphenylacetic acid (2a): 1H NMR (400 MHz, CDCl3, δ) 5.05 (s, 1H), 7.25–7.34 (m, 10H); 13C NMR (100 MHz, CDCl3, δ) 56.9
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • , compounds 6–9 are products of alkylation of the nitrogen atom of the heterocycle. Thiones 6–9 were obtained in 40–79% yield (Scheme 1,b). The structures of synthesized compounds were confirmed by the spectral methods IR-, 1H NMR, 13C{1H} NMR spectroscopy (Figures S1–S18 in Supporting Information File 1
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Tandem diazotization/cyclization approach for the synthesis of a fused 1,2,3-triazinone-furazan/furoxan heterocyclic system

  • Yuri A. Sidunets,
  • Valeriya G. Melekhina and
  • Leonid L. Fershtat

Beilstein J. Org. Chem. 2024, 20, 2342–2348, doi:10.3762/bjoc.20.200

Graphical Abstract
  • , indicating that the developed tandem protocol does not depend on the presence of the N-oxide moiety in the parent heterocycle. All synthesized triazinones 1 and 7 were fully characterized by IR, 1H and 13C NMR spectroscopy, and high-resolution mass spectrometry. The structure of compounds 1b and 7h was
  • . Supporting Information Supporting Information File 96: Experimental procedures, characterization data of all products, copies of 1H, 13C NMR, 15N spectra of new compounds, DSC curves,X-ray crystallographic data and copies of IR spectra. Acknowledgements The crystal structure determination was performed at
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2024
Other Beilstein-Institut Open Science Activities