Search results

Search for "nucleophilic" in Full Text gives 1273 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Identification and removal of a cryptic impurity in pomalidomide-PEG based PROTAC

  • Bingnan Wang,
  • Yong Lu and
  • Chuo Chen

Beilstein J. Org. Chem. 2025, 21, 407–411, doi:10.3762/bjoc.21.28

Graphical Abstract
  • drug”) class of PROTAC molecules with a PEG linker is frequently used to promote targeted protein degradation. The standard protocol for their synthesis involves nucleophilic aromatic substitution of 4-fluorothalidomide with a PEG-amine. We report herein the identification of a commonly ignored
  • impurity generated in this process. Nucleophilic acyl substitution competes with aromatic substitution to displace glutarimide and gives a byproduct that can co-elute with the desired product on HPLC throughout the remainder of the synthesis. Scavenging with taurine is a convenient way to minimize this
  • contamination. Keywords: glutarimide; IMiD; impurity; nucleophilic acyl substitution; PROTAC; Introduction Targeted protein degradation capitalizing on the concept of chemically induced dimerization has emerged as a new therapeutic approach recently [1]. In particular, the modularity of proteolysis targeting
PDF
Album
Supp Info
Letter
Published 18 Feb 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • glycosylation. Conventional glycosylation involves the ‘nucleophilic substitution’ of the leaving group at the sp3 anomeric centre of the donor moiety with a suitable carbohydrate or non-carbohydrate-based aglycon with the help of an electrophilic promoter to form the equatorial glycoside 7 or the axial
  • directions away from the central oxocarbenium ion intermediate in the limiting dissociative process involving diastereomeric ion pairs. Destabilisation and greater reactivity of the oxocarbenium intermediate causes the nucleophilic acceptor moiety to attack in a concerted process following a classical SN2
  • the anomeric carbon forming an electron-deficient bicyclic acyloxonium ion intermediate 11 which blocks the α-face of the glycosyl ring, inducing the attack of the nucleophilic acceptor 12 to approach from the opposite face to form the 1,2-trans glycoside 13 primarily. Various protecting groups for
PDF
Album
Review
Published 17 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • Zi-Ying Xiao Jing Sun Chao-Guo Yan College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China 10.3762/bjoc.21.21 Abstract In this paper, the nucleophilic substitution reactions of various N- and P-containing nucleophiles to MBH carbonates of isatins were investigated
  • have made them to become valuable building blocks in organic synthesis. Nucleophilic additions or spiroannulation of the highly reactive carbonyl group at the C-3 position of isatins have various fascinating applications in organic synthesis, which allowed transformation of isatins into various
  • synthetic methodologies and in continuation of our aim to develop domino reactions based on MBH carbonates of isatins for efficient construction of diverse polycyclic spiroindolinones [42][43][44][45][46][47][48][49][50][51][52], herein, we wish to report the nucleophilic substitution reactions of various N
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Three-component reactions of conjugated dienes, CH acids and formaldehyde under diffusion mixing conditions

  • Dmitry E. Shybanov,
  • Maxim E. Kukushkin,
  • Eugene V. Babaev,
  • Nikolai V. Zyk and
  • Elena K. Beloglazkina

Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18

Graphical Abstract
  • role in most cases is to generate highly reactive species in situ from the nucleophilic reaction component. This can subsequently interact with other reaction components to form target products. Compared to the crotonic condensation products of other aliphatic and aromatic aldehydes, methylidene
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2025

Streamlined modular synthesis of saframycin substructure via copper-catalyzed three-component assembly and gold-promoted 6-endo cyclization

  • Asahi Kanno,
  • Ryo Tanifuji,
  • Satoshi Yoshida,
  • Sota Sato,
  • Saori Maki-Yonekura,
  • Kiyofumi Takaba,
  • Jungmin Kang,
  • Kensuke Tono,
  • Koji Yonekura and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2025, 21, 226–233, doi:10.3762/bjoc.21.14

Graphical Abstract
  • antitumor activity, triggered by DNA alkylation [6][7][8]. The aminonitrile/hemiaminal at C21 generates an iminium cation while releasing a cyanide or a hydroxy group under physiological conditions. This iminium cation facilitates nucleophilic attack by guanine residues in the minor groove of the GC-rich
  • reaction involves an in situ generation of the iminium cation A followed by isomerization to the thermodynamically more stable iminium cation B. Subsequent nucleophilic attack of a copper acetylide enabled regioselective C–C bond formation at the C11 position. After removal of the cyclic acetal, the
  • , was obtained in one-pot, presumably via generation of the aminonitrile 17 and subsequent nucleophilic attack of the phenolic hydroxy group to form the five-membered ring. Our efforts to optimize this one-pot sequence led to the best results, affording 11 in 73% isolated yield, when acetone cyanohydrin
PDF
Album
Supp Info
Letter
Published 28 Jan 2025

Heteroannulations of cyanoacetamide-based MCR scaffolds utilizing formamide

  • Marios Zingiridis,
  • Danae Papachristodoulou,
  • Despoina Menegaki,
  • Konstantinos G. Froudas and
  • Constantinos G. Neochoritis

Beilstein J. Org. Chem. 2025, 21, 217–225, doi:10.3762/bjoc.21.13

Graphical Abstract
  • the desired thienopyrimidones 5a–e, quinolinopyrimidones 6a–e and indolopyrimidones 7a–e, respectively, as reported in the literature [42][44]. In accordance with the reported mechanism, after the initial formylation of the amino group at position 2, an intramolecular nucleophilic attack by the NH
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • electrophiles in various nucleophilic transformations due to their susceptibility to rapid decomposition into the corresponding isocyanates (Scheme 1a) [2][3]. They have attracted increasing interest as electrophilic amide sources in amidation using transition-metal catalysts such as ruthenium, rhodium, and
  • dioxazolone 7. Subsequently, nitrene insertion of INT-12 into the Cu–C bond, forms INT-13, which then undergoes isomerization and protodemetalation, followed by catalyst regeneration, as suggested by the DFT calculations. Finally, the nucleophilic addition of the amine to the electrophilic intermediate INT-15
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • standard Cu-catalyzed electrochemical protocol. Based on mechanistic studies, the proposed mechanism is shown in Figure 9. First, hydroquinone 34 is oxidized at the anode to generate a quinone intermediate 38. Meanwhile, the chiral copper catalyst reacts with the Schiff base 33, generating a nucleophilic
  • standard conditions. Subsequently, radical-polar coupling between electrophilic Ni-bound α-carbonyl radical intermediate 45 and remaining nucleophilic Cu-enolate 44 provides a chiral product 42 containing vicinal quaternary stereocenters with high stereoselectivity, and all three possible stereoisomers of
  • an alkene to generate a radical intermediate, followed by oxidation, which enables radical-polar crossover (RPC) and the subsequent nucleophilic attack of the cationic intermediate [67]. Alternatively, the initial radical intermediate can be trapped by a transition-metal catalyst, followed by a cross
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • to multiple C–C bonds generates extended carbon radicals capable of giving further functionalization. Regarding the ionic mechanism, the key step generally comprises the complexation with the unsaturated substrate leading to activation of the alkenyl/alkynyl moiety towards a nucleophilic attack. In
  • some cases, activation of a carbonyl group by the copper catalyst to facilitate nucleophilic attack has also been reported. Moreover, both activations can be operative simultaneously. Since copper shows affinity either for multiple C–C bonds or polar functional groups, it seems the ideal tool for this
  • (Scheme 16) [33]. The reaction, which occurs with formation of C–C, C–N and C–O bonds, involves a nucleophilic addition of the activated alkyne XIV to the in situ-generated iminium ion XV, followed by cyclization to form a quinoxalin-2-one intermediate XVI. A subsequent 5-endo-dig cyclization involving
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • intermediate Int-9. As the assumed rate-determining step the intramolecular nucleophilic addition takes place, followed by further cyclization and finally, release of the organocatalyst to form the axially chiral product 9. Various aryl-substituted indolines 9 were obtained in good yields and high enantiomeric
  • enantioselectivity during the nucleophilic addition, and the subsequent aromatization completes central-to-axial chirality conversion delivering products 68. Dynamic kinetic resolution of naphthylindoles 69 was performed by reaction with bulky electrophiles such as azodicarboxylates 70 or o-hydroxybenzyl alcohols 72
  • . The proposed reaction pathway follows hydrogen bonding with alkynylnaphthylamine and later nucleophilic addition of the allene intermediate. The synthesis on the preparative scale provided product 183 with almost no deterioration in yield or enantioselectivity (90%, 91% ee). This product could then be
PDF
Album
Review
Published 09 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • , photoredox-catalytic, and nucleophilic aromatic substitution reactions, as well as in the two-step synthesis of cyclobutanone. The molecules synthesized under the optimal conditions are presented in Figure 6b, employing the stable noisy optimization by branch and fit (SNOBFIT) algorithm. SNOBFIT offers a
PDF
Album
Review
Published 06 Jan 2025

Synthesis, characterization, and photophysical properties of novel 9‑phenyl-9-phosphafluorene oxide derivatives

  • Shuxian Qiu,
  • Duan Dong,
  • Jiahui Li,
  • Huiting Wen,
  • Jinpeng Li,
  • Yu Yang,
  • Shengxian Zhai and
  • Xingyuan Gao

Beilstein J. Org. Chem. 2024, 20, 3299–3305, doi:10.3762/bjoc.20.274

Graphical Abstract
  • available 2-bromo-4-fluoro-1-nitrobenzene, featuring a noble-metal-free system, mild reaction conditions, and a good yield, especially for the final Cs2CO3-facilitated nucleophilic substitution (77–91% yield). The characterization data obtained from IR and NMR spectroscopy (1H, 13C, 19F, and 31P) as well as
  • hand, we turned our attention to the synthesis of PhFlOP-based compounds through a Cs2CO3-facilitated nucleophilic substitution with substituted carbazoles as the nucleophiles (Scheme 2). For example, tert-butyl, bromo, carbazolyl, or phenyl substituents were introduced into the carbazoles. To our
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Reactivity of hypervalent iodine(III) reagents bearing a benzylamine with sulfenate salts

  • Beatriz Dedeiras,
  • Catarina S. Caldeira,
  • José C. Cunha,
  • Clara S. B. Gomes and
  • M. Manuel B. Marques

Beilstein J. Org. Chem. 2024, 20, 3281–3289, doi:10.3762/bjoc.20.272

Graphical Abstract
  • in electrophilic transfer reactions, with emphasis on umpolung reactivity of usually nucleophilic functional groups. Thus constituting a powerful synthetic tool, opening room for new synthetic disconnections [10]. Within the benziodoxol(on)e class, a range of HIRs featuring nitrogen-containing groups
  • reaction (Table 1, entry 1) [4]. In the presence of potassium carbonate, only starting material 4a was detected. A stronger base to generate the nucleophilic intermediate was tested, and sulfonamide 5aa was detected in trace amounts (Table 1, entry 2). Considering the low solubility of the hypervalent
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2024

Efficient synthesis of fluorinated triphenylenes with enhanced arene–perfluoroarene interactions in columnar mesophases

  • Yang Chen,
  • Jiao He,
  • Hang Lin,
  • Hai-Feng Wang,
  • Ping Hu,
  • Bi-Qin Wang,
  • Ke-Qing Zhao and
  • Bertrand Donnio

Beilstein J. Org. Chem. 2024, 20, 3263–3273, doi:10.3762/bjoc.20.270

Graphical Abstract
  • chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SNFAr) of various types of commercially available fluoroarenes with the electrophilic
  • subsequent second annulation, yielding a new series of extended polyaromatic mesomorphic compounds, i.e., 1,1',3,3',4,4'-hexafluoro-6,6',7,7',10,10',11,11'-octaalkoxy-2,2'-bitriphenylene (Gnm) which were found to display a Colrec mesophase. The specific nucleophilic substitution patterns of the Fn
  • red-shift of the emission peak. Keywords: arene–perfluoroarene interaction; decafluorobiphenyl; fluorinated triphenylene; fluoroarene nucleophilic substitution; organolithium; Introduction Non-covalent arene–fluoroarene intermolecular interactions [1][2] are drawing increasing attention due to their
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2024

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • hydrogen bonding with the protonated tertiary amine. Then, a Michael addition of malononitrile to the azadiene takes place to obtain exclusively the (S)-intermediate A. Subsequently an intramolecular nucleophilic addition of the nitrile leads to the intermediate B, which undergoes tautomerization to
  • -derived azadiene by H-bonding. This dual activation promotes a stereoselective addition of 3-chlorooxindole to the azadiene leading to intermediate A. The latter is also activated by the chiral guanidine and undergoes an intramolecular nucleophilic substitution which delivers the product 19b with the
  • the nitrogen atoms. Then, the azlactone enolate undergoes a nucleophilic attack on its Si-face via Mannich reaction with the 2-benzothiazolimine leading to intermediate A which evolves toward its resonance form B, responsible of the intramolecular attack of the negatively charged nitrogen to the
PDF
Album
Review
Published 10 Dec 2024

Synthesis of 2H-azirine-2,2-dicarboxylic acids and their derivatives

  • Anastasiya V. Agafonova,
  • Mikhail S. Novikov and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2024, 20, 3191–3197, doi:10.3762/bjoc.20.264

Graphical Abstract
  • derivatives [1]. In particular, the catalytic isomerization of 5-chloroisoxazoles allows the generation of azirine-2-carbonyl chlorides, which can be easily converted into a variety of azirine-2-carboxylic acid derivatives by reactions with nucleophilic reagents. Using this approach, numerous 2-(1H-pyrazol-1
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2024

Direct trifluoroethylation of carbonyl sulfoxonium ylides using hypervalent iodine compounds

  • Radell Echemendía,
  • Carlee A. Montgomery,
  • Fabio Cuzzucoli,
  • Antonio C. B. Burtoloso and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2024, 20, 3182–3190, doi:10.3762/bjoc.20.263

Graphical Abstract
  • fluoroalkyliodonium salts as sources of electrophilic trifluoroethyl synthon. Given the non-nucleophilic nature of the iodoarene byproduct, this protocol should not suffer from further reactivity that decomposes the ylide. We describe here the coupling of α-carbonyl sulfoxonium ylides with polyfluoroalkyl(aryl
  • arene moieties. These observations confirmed the LUMO as an appropriate lobe for nucleophilic attack via the SN2 pathway (path 2), and confirmed the LUMO+1 as an appropriate lobe for substitution via reductive elimination (path 1). As such, neither mechanism could be immediately discarded, and we were
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2024

Controlled oligomerization of [1.1.1]propellane through radical polarity matching: selective synthesis of SF5- and CF3SF4-containing [2]staffanes

  • Jón Atiba Buldt,
  • Wang-Yeuk Kong,
  • Yannick Kraemer,
  • Masiel M. Belsuzarri,
  • Ansh Hiten Patel,
  • James C. Fettinger,
  • Dean J. Tantillo and
  • Cody Ross Pitts

Beilstein J. Org. Chem. 2024, 20, 3134–3143, doi:10.3762/bjoc.20.259

Graphical Abstract
  • , e.g., a radical or cation) on the transannular carbon atom of a bicyclopentyl moiety can interact through space [35][63][64]. The consequence is ostensibly that more "nucleophilic" INT2 and INT5 are better matched for Cl atom abstraction from the "electrophilic" reagent (SF5Cl or CF3SF4Cl). To test
  • becomes more negative (or less positive) the farther it is from either the SF5 or CF3SF4 substituent, consistent with the notion that it becomes more nucleophilic. Moreover, the Δq is largest between the first two intermediates in both series – INT1 vs INT2 and INT3 vs INT4 – indicating that the most
  • [72][73][74]. The data show that BCP has a higher N value – thus stronger nucleophilic tendency – compared to both SF5Cl and CF3SF4Cl. Conversely, comparison of ω values shows significantly higher electrophilicity of SF5Cl and CF3SF4Cl compared to BCP. These results, coupled with decreasing ω and
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2024

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • firstly through the coordination of an alkene by the HVI reagent, which activates it toward intramolecular attack by an internal nucleophile. Following this, substitution of the iodane(III) can occur from the nucleophilic halide in solution to reveal the halo-cyclised product (Figure 2). In this review
  • fluoride ion to displace PhI. In pathway B (bottom), the nitrogen is oxidised by the iodane, generating an electrophilic intermediate B. Nucleophilic attack by the double bond subsequently forms the 6-membered ring intermediate C, which is either immediately attacked by fluoride to form both cis and trans
  • ring A (Scheme 2). The Pd(II) intermediate is oxidised by PhI(OPiv)2/AgF, forming Pd(IV). Formation of the product can occur either by reductive elimination by Pd(IV) or SN2 nucleophilic attack by fluorine with concomitant palladium reduction. Reductive elimination of the Pd(II) intermediate forms the
PDF
Album
Review
Published 28 Nov 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • (Table 5). DFT calculations predicted that the catalytically active species is the adduct of porphyrin and TBACl (18-I), which forms an activated complex (18-II) with the substrate followed by a ring-opening nucleophilic attack of Cl−. The electron-rich nitrogen atom in 18-III further activates
PDF
Album
Review
Published 27 Nov 2024

Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond

  • Thomas Ma and
  • John Chu

Beilstein J. Org. Chem. 2024, 20, 3050–3060, doi:10.3762/bjoc.20.253

Graphical Abstract
  • thioesterase (TE) domain and determines the topology of the final NRP product. The TE may release the NRP as a linear peptide or cyclic peptide, and the latter further manifests many possible topologies (Figure 5b). In a nutshell, offloading is a TE-catalyzed nucleophilic attack to release an NRP from the
  • offloading step always entails the same chemical reaction, wherein nucleophilic attack is promoted by the catalytic triad of a TE via general base catalysis. This is likely why traditional mechanistic studies that focused on the enzyme active site failed to work out how TEs control NRP topology. A priori
  • , respectively. Based on the position of the nucleophile, a NRP can be cyclized head-to-tail, via an amino acid side-chain, a nucleophilic heteroatom on the N-terminal fatty acyl chain, or as a multimer of repeating sub-structures (Figure 5b). The ring size, ratio of ʟ- and ᴅ-amino acids, etc. may also be the
PDF
Album
Perspective
Published 20 Nov 2024
Graphical Abstract
  • structure in the early days. Rotaxane bearing a dumbbell comprising only covalent bonds was first reported by Harada and co-workers in 1997 (Scheme 1B) [38]. In this system, the end-capping reaction was based on the nucleophilic substitution of the amino groups on the axle ends. Afterward, such nucleophilic
  • synthesis, Harada and co-workers reported the end-capping reaction based on nucleophilic substitution by the amino groups on axle ends (Scheme 2) [43]. Similarly, other highly efficient reactions have been performed as end-capping reactions to produce polyrotaxane [13][14][15]. In addition to the simple
PDF
Album
Review
Published 19 Nov 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • mainly include: nucleophilic addition or nucleophilic substitution with H2O2 or ROOH [17][18], autoxidation with O2, pericyclic reactions of unsaturated bonds with O3 or O2, and metal-catalyzed peroxidation (Isayama–Mukaiyama hydrosilylperoxidation [19][20], for example) [21][22][23]. As the topic is
  • generate the nucleophilic carbon radical B. The intramolecular 1,5-HAT of B provided the alkyl radical C, which then cross-coupled with the in situ-generated high-valent Mnn+1OO-t-Bu species to form the 1,6-difunctionalized product 42 via peroxy-ligand transfer. The remote trifluoromethylthiolation
  • be generated by nucleophilic attack of the tert-butylperoxy radical to the radical intermediate A or TBHP to the carbocation intermediate B. Using carboxylic acids 215 and TBHP, the synthesis of β-peroxy-α-acyloxy derivatives 216 was developed via the TBAI-promoted acyloxylation–peroxidation of
PDF
Album
Review
Published 18 Nov 2024

Synthesis of fluorinated acid-functionalized, electron-rich nickel porphyrins

  • Mike Brockmann,
  • Jonas Lobbel,
  • Lara Unterriker and
  • Rainer Herges

Beilstein J. Org. Chem. 2024, 20, 2954–2958, doi:10.3762/bjoc.20.248

Graphical Abstract
  • 20 in a yield of 89% [13]. To convert the iodo to an OH group, compound 20 was reacted with Cu2O, 2-pyridinaldoxime and CsOH to give 2-hydroxy-3,4,5-trimethoxybenzaldehyde (21, 65%) [13]. In a subsequent nucleophilic substitution, the fluorinated alkyl chains of 16, 17, and 18 were linked via a
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2024

gem-Difluorovinyl and trifluorovinyl Michael acceptors in the synthesis of α,β-unsaturated fluorinated and nonfluorinated amides

  • Monika Bilska-Markowska,
  • Marcin Kaźmierczak,
  • Wojciech Jankowski and
  • Marcin Hoffmann

Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247

Graphical Abstract
  • synthesis, e.g., via pericyclic reactions or nucleophilic additions. Results and Discussion We commenced our research by screening the nature of the base to generate carbanion at alpha position. We chose 2,3,3,3-tetrafluoro-N-heptylpropanamide, obtained according to the procedure developed earlier in our
PDF
Album
Supp Info
Letter
Published 15 Nov 2024
Other Beilstein-Institut Open Science Activities