Search results

Search for "organic synthesis" in Full Text gives 724 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • of its unique interaction in organic synthesis. Chiral halonium salts have been found to have strong halogen-bonding-donor abilities and work as powerful asymmetric catalysts. Recently, we have developed binaphthyl-based chiral halonium salts and applied them in several enantioselective reactions
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Photomechanochemistry: harnessing mechanical forces to enhance photochemical reactions

  • Francesco Mele,
  • Ana M. Constantin,
  • Andrea Porcheddu,
  • Raimondo Maggi,
  • Giovanni Maestri,
  • Nicola Della Ca’ and
  • Luca Capaldo

Beilstein J. Org. Chem. 2025, 21, 458–472, doi:10.3762/bjoc.21.33

Graphical Abstract
  • Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy 10.3762/bjoc.21.33 Abstract Photomechanochemistry, i.e., the merger of light energy and mechanical forces, is emerging as a new trend in organic synthesis, enabling unique reactivities of fleeting excited states under solvent
  • photons and forces, streamlining the combination of mechanochemical and photochemical processes and paving the way for more efficient, sustainable, and selective transformations in organic synthesis. An unexplored opportunity is offered by resonant acoustic mixing (RAM) [82], a technology that leverages
PDF
Album
Perspective
Published 03 Mar 2025

Electrochemical synthesis of cyclic biaryl λ3-bromanes from 2,2’-dibromobiphenyls

  • Andrejs Savkins and
  • Igors Sokolovs

Beilstein J. Org. Chem. 2025, 21, 451–457, doi:10.3762/bjoc.21.32

Graphical Abstract
  • Andrejs Savkins Igors Sokolovs Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas 1, 1004 Riga, Latvia 10.3762/bjoc.21.32 Abstract The remarkable nucleofugality of bromoarenes in diarylbromonium species
  • Belyakov from the Latvian Institute of Organic Synthesis (LIOS) for X-ray crystallographic analysis. We also thank Prof. Edgars Suna (LIOS) for helpful discussions and assistance in preparing the manuscript. Funding This work was financially supported by Latvian Science Council grant LZP-2021/1-0595.
PDF
Album
Supp Info
Letter
Published 27 Feb 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • ability to operate under low-energy light conditions, opens up new avenues for main-group redox catalysis in organic synthesis. By leveraging light excitation to enhance the reducing power of the bismuth complex, the study showcases the potential of main-group photoredox systems to complement traditional
  • findings suggest that cyanins, specifically tailored to absorb in the NIR region, exhibit promising redox properties for applications in organic synthesis. A recent work by Goddard et al. has demonstrated that compound 46 is highly effective in various photoredox transformations, such as aza-Henry
  • potential applicability [70]. Values are given in Figure 13. The first results obtained in organic synthesis have consisted in the dual Pd/DMQA-catalyzed C(sp2)–H arylation with aryldiazonium such as 56 with lactam derivative 57, which have leaded to similar results as the traditionnal use of Ru(bpy)32
PDF
Album
Review
Published 07 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • have made them to become valuable building blocks in organic synthesis. Nucleophilic additions or spiroannulation of the highly reactive carbonyl group at the C-3 position of isatins have various fascinating applications in organic synthesis, which allowed transformation of isatins into various
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Synthesis of disulfides and 3-sulfenylchromones from sodium sulfinates catalyzed by TBAI

  • Zhenlei Zhang,
  • Ying Wang,
  • Xingxing Pan,
  • Manqi Zhang,
  • Wei Zhao,
  • Meng Li and
  • Hao Zhang

Beilstein J. Org. Chem. 2025, 21, 253–261, doi:10.3762/bjoc.21.17

Graphical Abstract
  • groups in organic synthesis [1][2][3][4]. In chemistry and biology, disulfide bonds play crucial roles in protein folding and stabilization [5][6][7][8] and in the rubber industry, they are used to link different polymer chains [9][10]. The disulfide bond backbone is commonly used as a linker for
  • antibody–drug coupling (ADCs), in which the active drug released in the target cell by selectively breaking the disulfide bond [11]. Given the wide applicability of disulfides, the development of efficient, green, mild, and cost-effective methods for the organic synthesis of disulfides is of significant
  • sulfinate (Scheme 1) [29][30][31][32]. Among the available alternatives, sodium sulfinate is particularly interesting because it is more stable and easier to transport, and it is widely used in organic synthesis [33][34][35][36][37]. When using sodium sulfite as the starting material for the construction of
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • increasing interest as affordable, versatile, and sustainable catalytic systems. These catalysts are extensively employed in organic synthesis owing to their cost-effectiveness, reduced toxicity, and natural abundance [20][21][22][23][24][25][26][27][28]. The use of copper salts has enabled a variety of
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • –heteroatom (C–X, where X = N, O, or halogens) bonds in organic synthesis. Copper was one of the first transition metals employed in cross-coupling to form C–C and C–X bonds [1][2]. In 1901, Ullmann reported the first cross-coupling reaction for the formation of biaryl compounds in the presence of
  • ’ and Fu’s asymmetric C–N bond cross-coupling reactions by merging photoredox catalysis with copper catalysis [29][30]. Building on the success of photoredox catalysis, electrochemistry has emerged as a complementary and attractive strategy for promoting sustainability of organic synthesis. By offering
  • catalysis to organic synthesis, focusing on recent developments in Cu-catalyzed electrochemical reaction categorized into four types: 1) C–H functionalization, 2) olefin addition, 3) decarboxylative functionalization, and 4) coupling reactions (Figure 3). This review aims to provide insight into the
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • ; heteropolycycles; multicomponent reactions; one-pot reaction; Introduction Copper has gained a relevant role in organic synthesis as an alternative to precious metals due to its low toxicity, ease of handling, high catalytic activity, and cost-effectiveness [1][2]. In recent years, Cu(OTf)2 has significantly
  • known processes, a particular Mannich-type reaction was realized in water in the presence of a dendritic 2,2’-bipyridine ligand 2 and Cu(OTf)2 (Scheme 2) [16]. The hydrophobic ligand surrounding the metal revealed to be essential for the organic synthesis in water, thus increasing the reaction yields
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • ; Introduction Stereoselective catalytic formation of chiral compounds is one of the critical tasks of modern organic synthesis [1]. The catalytic formation of compounds with a center of chirality has been the focus of countless works and can now be considered a matured area. On the other hand, the generation of
PDF
Album
Review
Published 09 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • reactors; data processing; high-throughput experimentation; machine learning; reaction optimization; Introduction Organic synthesis plays a crucial role in drug discovery, polymer synthesis, materials science, agrochemicals, and specialty chemicals. Their synthesis and process optimization require
  • . In addition to organic synthesis, the slug flow methodology has found application in polymer synthesis. A flow platform capable of polymerizing 397 unique copolymer compositions was developed by Reis et al. [51] using a droplet flow reactor. The methodology and high-fidelity data enabled them to
  • Bédard et al. [62] to mitigate some of the challenges in traditional organic synthesis by the integration of hardware, software, and analytics. Comprising an array of modular components, including units for heating, cooling, LED light exposure, and packed bed reactors, it provides a flexible platform for
PDF
Album
Review
Published 06 Jan 2025

Reactivity of hypervalent iodine(III) reagents bearing a benzylamine with sulfenate salts

  • Beatriz Dedeiras,
  • Catarina S. Caldeira,
  • José C. Cunha,
  • Clara S. B. Gomes and
  • M. Manuel B. Marques

Beilstein J. Org. Chem. 2024, 20, 3281–3289, doi:10.3762/bjoc.20.272

Graphical Abstract
  • . A plausible mechanism is proposed, suggesting a possible radical pathway. Keywords: electrophilic amination; hypervalent iodine reagents; sulfinamide; sulfonamide; Introduction Iodine(III) compounds, known as λ3-iodanes, have been extensively applied in organic synthesis. Although initially used
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2024

Ceratinadin G, a new psammaplysin derivative possessing a cyano group from a sponge of the genus Pseudoceratina

  • Shin-ichiro Kurimoto,
  • Kouta Inoue,
  • Taito Ohno and
  • Takaaki Kubota

Beilstein J. Org. Chem. 2024, 20, 3215–3220, doi:10.3762/bjoc.20.267

Graphical Abstract
  • , the first asymmetric total synthesis of psammaplysin A was accomplished by Smith and Morrow, and the absolute configuration of compound 1 was also confirmed through organic synthesis [7]. In our ongoing research focused on uncovering new bioactive secondary metabolites from Okinawan marine sponges, we
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2024

Direct trifluoroethylation of carbonyl sulfoxonium ylides using hypervalent iodine compounds

  • Radell Echemendía,
  • Carlee A. Montgomery,
  • Fabio Cuzzucoli,
  • Antonio C. B. Burtoloso and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2024, 20, 3182–3190, doi:10.3762/bjoc.20.263

Graphical Abstract
  • versatile intermediates in organic synthesis due to their unique reactivity and ability to participate in a wide range of chemical transformations. In this scenario, sulfoxonium ylides are excellent substrates for bifunctionalization reactions, due to the ambiphilic character in their ylidic carbon [16
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2024

Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies

  • Lucía Campos-Prieto,
  • Aitor García-Rey,
  • Eddy Sotelo and
  • Ana Mallo-Abreu

Beilstein J. Org. Chem. 2024, 20, 3151–3173, doi:10.3762/bjoc.20.261

Graphical Abstract
  • organic synthesis, particularly through MCRs, have streamlined the synthesis of benzodiazepines, making it more efficient and environmentally friendly [55]. For example, olanzapine as a benzodiazepine-based clinical drug was appropriately and concisely synthesized via MCR [56][57]. Over the last twenty
PDF
Album
Review
Published 03 Dec 2024

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • , including ligand coupling, oxidative addition, intermolecular nucleophilic attack, 1,2-aryl migration, reductive elimination, and intramolecular nucleophilic attack. This approach offers a rapid and effective way to produce 5-fluoro-2-aryloxazoline compounds, which are valuable building blocks in organic
  • synthesis. Carbon nucleophiles In addition to intramolecular aminofluorination and oxyfluorination, Szabó and co-workers reported alkene carbofluorination in 2015 (Scheme 22) [31]. Using 1-fluoro-3,3-dimethylbenziodoxole (12) and [Cu(MeCN)4]BF4 as a catalyst to activate it, the authors reported the
PDF
Album
Review
Published 28 Nov 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • macrocycles as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches [84]. This review does not only focus on the metal-free porphyrin macrocycles, but it also covers the area of different porphyrinoid systems, such as heteroatom
PDF
Album
Review
Published 27 Nov 2024

Structure and thermal stability of phosphorus-iodonium ylids

  • Andrew Greener,
  • Stephen P. Argent,
  • Coby J. Clarke and
  • Miriam L. O’Duill

Beilstein J. Org. Chem. 2024, 20, 2931–2939, doi:10.3762/bjoc.20.245

Graphical Abstract
  • Andrew Greener Stephen P. Argent Coby J. Clarke Miriam L. O'Duill School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK 10.3762/bjoc.20.245 Abstract Hypervalent iodine(III) reagents have become indispensable tools in organic synthesis, but gaps remain in the
  • the rational design and synthesis of novel, unstabilised hypervalent iodine(III) compounds and expand the application of these powerful reagents in organic synthesis. Results and Discussion Structural data Twelve phosphorus-iodonium ylids were synthesised (Figure 2). X-ray diffraction data (XRD) of
  • will stimulate the design and synthesis of new hypervalent iodine compounds, expanding the functionalisation reactions currently available through these useful reagents in organic synthesis. Structure and stability of hypervalent iodine compounds. Phosphorus-iodonium ylids investigated in this study
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • or without the use of transition metals [44]. Thus, they address both the financial and environmental challenges associated with organic synthesis by acting as environmentally benign substitutes for costly organometallic catalysts and heavy-metal-based oxidants. Diaryl iodide salts consist of two
PDF
Album
Review
Published 13 Nov 2024

C–H Trifluoromethylthiolation of aldehyde hydrazones

  • Victor Levet,
  • Balu Ramesh,
  • Congyang Wang and
  • Tatiana Besset

Beilstein J. Org. Chem. 2024, 20, 2883–2890, doi:10.3762/bjoc.20.242

Graphical Abstract
  • using the synthetic potential of hydrazones in organic synthesis. Experimental General procedure for the preparation of trifluoromethylthiolated products 2–6: An oven-dried 10 mL reaction tube equipped with a stirring bar was charged with the hydrazone derivative (0.3 mmol, 1.0 equiv) and CH3CN (0.7 mL
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2024

Multicomponent synthesis of α-branched amines using organozinc reagents generated from alkyl bromides

  • Baptiste Leroux,
  • Alexis Beaufils,
  • Federico Banchini,
  • Olivier Jackowski,
  • Alejandro Perez-Luna,
  • Fabrice Chemla,
  • Marc Presset and
  • Erwan Le Gall

Beilstein J. Org. Chem. 2024, 20, 2834–2839, doi:10.3762/bjoc.20.239

Graphical Abstract
  • primary organozinc reagents. Keywords: alkyl bromides; branched amines; Mannich reaction; multicomponent reaction; zinc; Introduction The multicomponent Mannich reaction is one of the most powerful tools available in organic synthesis for the straightforward generation of α-branched amines [1][2][3
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2024

Mechanochemical difluoromethylations of ketones

  • Jinbo Ke,
  • Pit van Bonn and
  • Carsten Bolm

Beilstein J. Org. Chem. 2024, 20, 2799–2805, doi:10.3762/bjoc.20.235

Graphical Abstract
  • ; mechanochemistry; Introduction In recent years, mechanochemical organic synthesis has been advanced significantly, prompting organic chemists to reconsider the necessity of solvents in their reactions [1][2][3][4][5][6][7][8][9][10][11]. Eliminating hazardous solvents substantially reduces the ecological
PDF
Album
Supp Info
Letter
Published 04 Nov 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • transformed into a series of useful molecules, enabling them an important backbone in organic synthesis. Lin et al. [66] used sodium sulfinates as the nucleophiles to realize the asymmetric sulfonylation of yne-allylic esters. The reaction can be carried out under mild conditions with good to excellent regio
PDF
Album
Review
Published 31 Oct 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • Coimbra, 3004-535 Coimbra, Portugal LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal 10.3762/bjoc.20.227 Organic synthesis and catalysis are two of the main stalwarts of the chemical sciences, and they have undergone
  • extraordinary advances over the past 150 years. They are a crucial tool for the development of new molecules across a wide range of fields, including drug discovery, energy, materials science, and many more. The ability to design and create novel compounds through organic synthesis, aided by catalysis, is
  • intramolecular aminocarbonylation using Mo(CO)6. Both catalytic approaches successfully produced the desired DBDAPs. As previously mentioned, organic synthesis is a crucial tool for preparing complex molecules of high value to industry. Frackenpohl et al. [13] designed and synthesized a new library of 2,3
PDF
Album
Editorial
Published 28 Oct 2024

Base-promoted cascade recyclization of allomaltol derivatives containing an amide fragment into substituted 3-(1-hydroxyethylidene)tetronic acids

  • Andrey N. Komogortsev,
  • Constantine V. Milyutin and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 2585–2591, doi:10.3762/bjoc.20.217

Graphical Abstract
  • -hydroxypyran-4-ones these products are widely used in organic synthesis [17][18][19][20][21][22][23]. Among the diverse chemical transformations of allomaltol derivatives the recyclizations of the pyranone ring are of great interest. As a rule, such reactions are realized under action of nitrogen-containing
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2024
Other Beilstein-Institut Open Science Activities