Search results

Search for "benzylic" in Full Text gives 391 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling

  • John M. Halford-McGuff,
  • Thomas M. Richardson,
  • Aidan P. McKay,
  • Frederik Peschke,
  • Glenn A. Burley and
  • Allan J. B. Watson

Beilstein J. Org. Chem. 2024, 20, 3198–3204, doi:10.3762/bjoc.20.265

Graphical Abstract
  • chromene (12) were tolerated. Benzylic azides were accommodated including those bearing nitro (2), iodo (3), and boronic ester groups (5, 21). Strained rings were effective including cubane (18) and bicyclopentane (20). While 18 and 20 were isolated in lower yield, no evidence of ring opening was observed
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • recombination of radicals F and D leads to the product 67. Photochemical peroxidation of isochromans and other benzylic C(sp3)–H substrates 68 with TBHP was developed using Ir(ppy)3 as the photocatalyst and Bronsted acid as an additive (Scheme 25) [68]. Visible light irradiation of [IrIII(ppy)3] to give the
  • the presence of Cu/TBHP. The cyclohexyl radical C attacks at the α-carbon of α,β-unsaturated ketone D generating a benzylic radical E. Finally, a radical cross-coupling between B and benzylic radical E furnish the formation of cycloalkyl–peroxy product 106. The acid-catalyzed radical additions of
PDF
Album
Review
Published 18 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • in arylfluoroacetamides 8 as final products. Further, Zaheer and group developed an α-arylation of synthetically valuable α-fluoro-α-nitroacetamides (9, R = NO2, Scheme 3) under gentle conditions to form a quaternary benzylic fluorocarbon center. The protocol was found to be effective for the α
  • to achieve the fluorinated products having a tetrasubstituted benzylic carbon center in good to excellent yields. The strategy was also used for the synthesis of α-arylated α-fluoro(arylsulfonyl)acetonitriles in good yield. In a recent study, Dohi et al. achieved the arylation along with
PDF
Album
Review
Published 13 Nov 2024

Access to optically active tetrafluoroethylenated amines based on [1,3]-proton shift reaction

  • Yuta Kabumoto,
  • Eiichiro Yoshimoto,
  • Bing Xiaohuan,
  • Masato Morita,
  • Motohiro Yasui,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2024, 20, 2776–2783, doi:10.3762/bjoc.20.233

Graphical Abstract
  • ]-proton shift reaction in this study is expected to proceed via the reaction mechanism reported by Soloshonok [25][26][27][28][29][30][31][32], as shown in Scheme 6. First, DBU interacts with the benzylic hydrogen of the imine (R)-16, and this hydrogen is about to be abstracted as a proton. This hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2024

Transition-metal-free decarbonylation–oxidation of 3-arylbenzofuran-2(3H)-ones: access to 2-hydroxybenzophenones

  • Bhaskar B. Dhotare,
  • Seema V. Kanojia,
  • Chahna K. Sakhiya,
  • Amey Wadawale and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2024, 20, 2655–2667, doi:10.3762/bjoc.20.223

Graphical Abstract
  • synthetic route. Results and Discussion Initially, 3-arylbenzofuran-2(3H)-ones 3aa–ma were prepared following a SbCl3-catalyzed Friedel–Crafts alkylation of phenols 1a–m with benzylic alcohols 2a–d, earlier reported by us (Scheme 1) [21][22][23]. All the synthesized 3-arylbenzofuran-2(3H)-ones were
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • . For example, Liu and colleagues demonstrated the electrochemical oxidation of benzylic C–H bonds to ketones using tert-butyl hydroperoxide as the radical initiator [14]. This method was applied to functionalize bioactive molecules, with celestolide, ibuprofen methyl ester, and papaverine being
  • oxidized at the benzylic position in good yields. A gram-scale test was conducted to confirm the potential for large-scale applications. According to the authors, the electrochemical oxidation of t-BuOOH at the anode leads to a tert-butyl peroxyl radical that activates the C–H bond at the benzylic position
  • scaffolds. During the reaction, the arylcyclopropane is oxidized at the anode to form a radical cation, causing the weakening of the Cα–Cβ bond. The radical cation then undergoes a three-electron SN2 reaction to generate a benzylic radical, which loses an electron at the anode to form a benzylic carbocation
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • , entry 1). Assignment of the relative configurations as cis or trans was achieved by 1H NMR analysis, considering the chemical shifts of the proton in the α-position of the β-lactam nitrogen atom and the geminal protons in the benzylic position (see Supporting Information File 1). The difference in the
  • . Across all tested substrates, nucleophilic attack predominantly occurred at the homobenzylic position, leading to the regioselective formation of clavam derivative with 2-benzylic substitution due to aryl stabilization of the radical intermediate (see mechanistic discussion below). We briefly
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Efficient one-step synthesis of diarylacetic acids by electrochemical direct carboxylation of diarylmethanol compounds in DMSO

  • Hisanori Senboku and
  • Mizuki Hayama

Beilstein J. Org. Chem. 2024, 20, 2392–2400, doi:10.3762/bjoc.20.203

Graphical Abstract
  • Pt cathode and a Mg anode in the presence of carbon dioxide induced reductive C(sp3)−O bond cleavage at the benzylic position in diarylmethanol compounds and subsequent fixation of carbon dioxide to produce diarylacetic acids in good yield. This protocol provides a novel and simple approach to
  • dioxide; Introduction Electrochemical reduction of benzyl alcohol derivatives can induce reductive cleavage of a C(sp3)–O bond [1] at the benzylic position to generate the corresponding benzylic anion species. This protocol has been frequently applied to electrochemical carboxylation [2][3][4][5][6][7][8
  • presence of carbon dioxide to give the corresponding phenylacetic acids [12]. We found that alkyl benzyl carbonates and benzal diacetates (benzylidene diacetates) were also applicable to electrochemical carboxylation with C(sp3)–O bond cleavage at the benzylic position, yielding phenylacetic acids [13] and
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • analyses of microsomal stability confirm prolongation of t1/2 of the new deuterated analogs. We also report the first preparation of [D2]-isonitriles from [D3]-formamides via a modified Leuckart–Wallach reaction and their use in an MCR to afford products with [D2]-benzylic positions and likely
  • reagents in MCRs and determination of discrepancies in deuterium retention with MCRs has yet to be explored, although one would expect scrambling to be limited. Thus, we began by gathering highly deuterated aldehydes (>95% D) prepared via NHC catalysis [13] and developed a route to deuterated [D2]-benzylic
  • production or external purchase and have progressed along the value chain to the clinic and full approval [5]. Literature inspection reveals that an established common method to prepare deuterated benzylic isonitriles is reduction of a nitrile in the presence of a deuterium source (Scheme 1) [16][17][18
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Natural resorcylic lactones derived from alternariol

  • Joachim Podlech

Beilstein J. Org. Chem. 2024, 20, 2171–2207, doi:10.3762/bjoc.20.187

Graphical Abstract
PDF
Album
Supp Info
Review
Published 30 Aug 2024

Novel truxene-based dipyrromethanes (DPMs): synthesis, spectroscopic characterization and photophysical properties

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2024, 20, 2163–2170, doi:10.3762/bjoc.20.186

Graphical Abstract
  • synthesis of only truxene was established by Dehmlow’s research group in 1997 [10]. Remarkably, one of the advantages of truxene over the other polyaromatic hydrocarbons (PAHs) is the presence of three benzylic positions, that generally permit to assemble a myriad of functionalized truxene-based
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • mechanism. In the case of tertiary alkanethiols and arylmethanethiols, the corresponding imidoyl radicals 2 decompose to give tertiary alkyl and benzylic radicals, respectively, to form isothiocyanates 5. On the other hand, we have investigated the radical addition of diphenyl disulfide to isocyanides under
PDF
Album
Perspective
Published 26 Aug 2024

Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications

  • Matteo Gasparetto,
  • Balázs Fődi and
  • Gellért Sipos

Beilstein J. Org. Chem. 2024, 20, 1922–1932, doi:10.3762/bjoc.20.168

Graphical Abstract
  • for our needs [52][53]. Benzylic bromination followed by nucleophilic substitution offers a general approach for the introduction of the nitrogen atom [54][55][56]. Consequently, the continuous flow Wohl–Ziegler bromination of 2b was attempted [57]. Even though we could observe excellent LCMS
  • -conversion for the mono-brominated compound, we encountered several problems related to the stability of the product (see Supporting Information File 1). To circumvent these issues, we came across the possibility of inserting an oximino group into the benzylic position which can then be converted into an
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Solvent-dependent chemoselective synthesis of different isoquinolinones mediated by the hypervalent iodine(III) reagent PISA

  • Ze-Nan Hu,
  • Yan-Hui Wang,
  • Jia-Bing Wu,
  • Ze Chen,
  • Dou Hong and
  • Chi Zhang

Beilstein J. Org. Chem. 2024, 20, 1914–1921, doi:10.3762/bjoc.20.167

Graphical Abstract
  • postulated for the synthesis of benzofuran derivatives from styrene derivatives by iodane reagents [29][30]. Subsequently, intermediate D is attacked by H2O at the benzylic carbon atom to afford intermediate E. Intramolecular proton shift occurs, generating the intermediate F, which undergoes phenyl
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • cation is formed with two resonance structures (not counting further movement into the other aromatic rings destroying the aromaticity of one more ring). Resonance structure A has the cation in a benzylic position and will be the preferred site for nucleophilic attack of methanol compared to resonance
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Oxidation of benzylic alcohols to carbonyls using N-heterocyclic stabilized λ3-iodanes

  • Thomas J. Kuczmera,
  • Pim Puylaert and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 1677–1683, doi:10.3762/bjoc.20.149

Graphical Abstract
  • iodanes (NHIs) as suitable reagents for the mild oxidation of activated alcohols. Two different protocols, both involving activation by chloride additives, were used to synthesize benzylic ketones and aldehydes without overoxidation in up to 97% yield. Based on MS experiments an activated hydroxy(chloro
  • mild oxidation of primary and secondary benzylic alcohols to aldehydes and ketones as an alternative to λ5-iodanes. Results and Discussion Initially, we investigated a variety of pyrazole-, triazole-, and oxazole-substituted hydroxy-NHIs previously developed by our group [25]. However, none of them
  • to undesired oxidations of the triple bond. The behavior of secondary benzylic alcohols was tested next, giving 4-methylacetophenone (4t) in an excellent yield of 97% and 1-indanone (4u) in 46%. It is worth noting that for some derivatives oxidized by method A, an acylation of the alcohol was
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • , over recent years much attention has been focused on C(sp3)–H fluorination, and several methods that are selective for benzylic C–H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles
  • . This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C–H bonds. Keywords: benzylic; C–H functionalization; fluorination; photoredox catalysis; Introduction The development of new fluorination methodologies is
  • which several have been disclosed in the chemical literature [11][12]. Benzylic C(sp3)–H bonds are comparatively weaker compared to unactivated C(sp3)–H bonds, with bond dissociation enthalpies (BDEs) falling in the range of 76–90 kcal mol−1 (Figure 1B), due to the increased stability of benzylic
PDF
Album
Review
Published 10 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • α-S(e)CN-functionalization of different pronucleophiles [39] as well as the benzylic azidation of alkylphenol derivatives with NaN3 using TBAI as a catalyst [41]. Considering the fact that TBAI clearly represents one of the most easily available quaternary ammonium iodides and keeping in mind our
  • successfully demonstrated matching combination of this catalyst with NaN3 and DBPO for our benzylic azidations [41], we were thus wondering if the use of these simple bulk chemicals also allows for the oxidative α-azidation of different carbonyl-based pronucleophiles. As outlined in this contribution, this
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • have provided innovative strategies, substrates in all of these reaction systems are generally limited to benzylic, α-amino-, and α-oxy aliphatic acids, presumably due to the necessity of stabilized radical intermediates for the following radical cyanation step. We and others have recently demonstrated
  • investigated (Figure 2). Arylacetic acids with relatively stable benzylic radicals as the corresponding intermediates have been proved to be suitable substrates to the reaction, providing the desired decarboxylative cyanation products with generally good yields (2–18). To show the synthetic potential of this
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • were determined by detailed analysis of their NMR spectral data. In particular, 1H NMR spectrum of the representative compound 4aa shows two characteristic signals at δ = 4.16 (singlet) and 3.89 (singlet) that correspond to the two groups of benzylic protons, respectively. Two peaks at δ = 3.77
  • -cyclohexenone. This is further supported by the 13C NMR spectrum, which contains two peaks at δ = 38.4 and 47.7 indicating the two types of benzylic carbons. The NMR data of known compound 4ab were also in good correlation with previously reported data [19]. The synthetic practicability of the protocol was
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Synthesis of substituted triazole–pyrazole hybrids using triazenylpyrazole precursors

  • Simone Gräßle,
  • Laura Holzhauer,
  • Nicolai Wippert,
  • Olaf Fuhr,
  • Martin Nieger,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2024, 20, 1396–1404, doi:10.3762/bjoc.20.121

Graphical Abstract
  • benzylic residues differed depending on the benzylic residue's functional groups and the pyrazole substitution pattern. For starting materials 15a and 15d, an excess of product 17 was usually observed. With the ester-functionalized triazene 15c and m-substituted benzylic reagents, regioisomer 18 was the
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • alcohols and benzylic alcohols delivered fruitful results. However, the reaction of benzyl alcohols was found to proceed within shorter reaction times and much higher yields compared to aliphatic alcohols. This process presumably involves a Cannizzaro reaction during the conversion of the benzyl alcohols
PDF
Album
Review
Published 19 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • -mediated deoxygenative trifluoromethylation technique worked with both benzylic and unactivated thiocarbonates. The proposed mechanism starts with the homolysis of (bpy)Cu(III)(CF3)3 by blue-light irradiation, which produces CF3 radicals and (bpy)Cu(II)(CF3)2. Subsequently, the interaction between the CF3
  • directly activated via photoredox catalysis. In 2018, Doyle and co-workers [54] documented a catalytic method for the deoxygenation of benzylic alcohols to toluenes, utilizing phosphines and photoredox catalyst under visible-light irradiation (Scheme 18). In this method, they were able to synthesize
  • (i.e., 62e–h, 30–82%) of the corresponding hydrocarbons. m-Substitution also provided a good product yield (i.e., 62i and 62j, 67 and 68%). Additionally, electron-rich benzylic alcohols yielded the product in a lower yield (i.e., 62k and 62l, 53 and 59%) compared to 62a. This was due to the generation
PDF
Album
Review
Published 14 Jun 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • undergo cyclization reactions under mild conditions. In case of 1,3-diphenylacetone (4a) some activation of the methylene group is observed as well, because of benzylic stabilization. Dianions of 1,3-dicarbonyl compounds follow a different regioselectivity as compared to simple monoanions [6][7][8][9][10
PDF
Album
Review
Published 29 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • hydride. In 2018, the Milstein group demonstrated a partial hydrogen-borrowing reaction with a manganese-pincer complex by coupling alcohols and hydrazine to form N-substituted hydrazones. Benzylic and aliphatic alcohols were studied with hydrazine using Mn(t-Bu-PNN)(CO)2Br (Mn5, 3 mol %) and a catalytic
  • amount of t-BuOK (5 mol %) at 110 °C [38]. Benzylic alcohols bearing electron-donating and withdrawing groups afforded 65–92% yields of the product within 24 h (Scheme 7). However, aliphatic alcohols such as 1-hexanol and 1-octanol required 36 h to give the corresponding products with 77% and 65% yields
  • optimized with 5 mol % of Mn1 and 10 mol % of K2CO3 in xylene at high temperature (150 °C) for 24 h afforded the desired N-alkylated sulfonamide compounds [40]. A wide range of aryl and alkyl sulfonamides were alkylated with various benzylic and aliphatic alcohols, providing good to excellent yields (Scheme
PDF
Album
Review
Published 21 May 2024
Other Beilstein-Institut Open Science Activities