Search results

Search for "Lewis acid" in Full Text gives 466 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Tandem Hock and Friedel–Crafts reactions allowing an expedient synthesis of a cyclolignan-type scaffold

  • Viktoria A. Ikonnikova,
  • Cristina Cheibas,
  • Oscar Gayraud,
  • Alexandra E. Bosnidou,
  • Nicolas Casaretto,
  • Gilles Frison and
  • Bastien Nay

Beilstein J. Org. Chem. 2024, 20, 162–169, doi:10.3762/bjoc.20.15

Graphical Abstract
  • one-pot transformation from readily available benzyl(prenyl)malonate substrates. After the photooxygenation of the prenyl moiety, the resulting hydroperoxide was directly engaged in a Hock cleavage by adding a Lewis acid. The presence of an aromatic nucleophile in the reaction mixture and that of a
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • starting or stopping the electrolysis, 3) the absence of fuming, most probably due to the ability of the IL to stabilize the Lewis acid, 4) reduced sensitivity to moisture, due to the protective action of the IL, and 5) the possibility of recycling the same sample of IL for subsequent reaction cycles. In
  • investigation using lower amounts of BF3·Et2O revealed that a 92% yield of 2a could be realized using 3 equiv of the Lewis acid by extending the reaction time to 65 h (Table 1, entry 10). A further reduction in the amount of BF3·Et2O to 2 equiv resulted in a lower yield of 66% after the same reaction time (65 h
  • anions could coordinate the Lewis acid BF3 through the negatively charged oxygen [107], decreasing availability of BF3 for catalysis. Otherwise, ILs possessing bis(trifluoromeylsulfonyl)imide and hexafluorophosphate anions afforded hydrated product 2a with slightly better yields (87%) compared to those
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks

  • Zhang Dongxu

Beilstein J. Org. Chem. 2023, 19, 1741–1754, doi:10.3762/bjoc.19.127

Graphical Abstract
  • oxidation/cyclization with NXS or Cu(OAc)2. Notably, some of the resultant CF3-substituted 1,6-dihydropyridazines exhibited aggregation-induced emission [102][103] (Scheme 16). The hydrocyanation of acylhydrazones is an important method for the preparation of α-hyrazino acids. Hu et al. reported a Lewis
  • acid-catalyzed hydrocyanation of trifluoromethylated acylhydrazones, in which the product was the precursor for the preparation of chiral fluorinated amino acids [104] (Scheme 17a). Meanwhile, Hu et al. provided a novel and efficient process for the synthesis of polysubstituted 3-trifluoromethyl-1,2,4
PDF
Album
Review
Published 15 Nov 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

Lewis acid-promoted direct synthesis of isoxazole derivatives

  • Dengxu Qiu,
  • Chenhui Jiang,
  • Pan Gao and
  • Yu Yuan

Beilstein J. Org. Chem. 2023, 19, 1562–1567, doi:10.3762/bjoc.19.113

Graphical Abstract
  • nitrite as a nitrogen-oxygen source, and solely using aluminum trichloride as the additive. This approach circumvents the need for costly or highly toxic transition metals and presents a novel pathway for the synthesis of isoxazole derivatives. Keywords: aluminum trichloride; Lewis acid; isoxazole
  • the Lewis acid to realize the sp3 C–H-bond activation of nitrogen heterocycles to synthesize isoxazole derivatives. Results and Discussion At the outset of this study, we chose the reaction of 2-methylquinoline (2a) with phenylacetylene (1a) in the presence of AlCl3 (3 equiv) and sodium nitrite (10
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • -catalyzed sulfenylation by N-(sulfenyl)succinimides/phthalimides In 2012, Chen and co-workers found that in the reaction of N-(organothio)succinimides 1 and sodium sulfinates 2 using a Lewis acid in ionic liquids (ILs) and water as a green solvent system leads to the formation of thiosulfonates 3 (Scheme 2
  • ) [44]. Among different Lewis acid catalysts, such as Cu(OTf)2, Mg(OTf)2, Zn(OTf)2, Sc(OTf)3, Eu(OTf)3, and Yb(OTf)3, it was found that Sc(OTf)3 gave higher product yield. In addition, the combination of Sc(OTf)3/ILs displayed good recyclability in this transformation. In 2014, Anbarasan and Saravanan
  • nucleophilic attack of TMSN3 to deliver product 11 (Scheme 7). Tian and Chang et al. could synthesize 3‑sulfenylated coumarin compounds 13 by using N-sulfanylsuccinimides 1 under a Lewis acid catalysis system (Scheme 8) [48]. Additionally, oxidation of 3-sulfenylated coumarins utilizing (diacetoxyiodo)benzene
PDF
Album
Review
Published 27 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • of ethers to obtain symmetric and asymmetric 1,1-bis-indolylmethane derivatives (Scheme 23) [84]. The reaction proceeds through the tandem oxidative coupling of the C–O bond and cleavage of the C–H bond. Fe plays a dual role in catalysing the C–C bond coupling and C–O bond cleavage as Lewis acid
  • pathway. Initially, a tert-butoxyl radical is generated by thermal decomposition. Then, the tert-butoxyl radical extracts an α-hydrogen atom from tetrahydrofuran to form tetrahydrofuran radical A. Sc(OTf)3 as a Lewis acid activates pyridine forming the pyridine complex B. Then, radical A adds to the more
PDF
Album
Review
Published 06 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • system. Like the classical Friedel–Crafts reaction, the aza-Friedel–Crafts reaction also requires the presence of a Lewis acid catalyst for rate acceleration. The reaction can be very easily modulated by different Lewis acidic metallic compounds which effectively form a coordinate bond by accepting the
  • benzofuran-2(3H)-one derivative 144 having an aza-quaternary stereocenter. The achiral Lewis acid tris(pentafluorophenyl)borane was required as additive in the reaction system to enhance the chemical yield and enantioselectivity. After two additional steps, i.e., demethylation of the phenolic ether and ester
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • work-up of intermediate H (Scheme 2b). Review Conventional method for the Clauson–Kaas synthesis of N-substituted pyrroles This section describes Clauson–Kaas pyrrole syntheses using traditional methods, such as Brønsted acid or Lewis acid-catalyzed reactions in various organic solvents at higher
  • excellent yields. To obtain the best reaction conditions, various Lewis acid catalysts (e.g., FeCl3 CuCl2, InCl3, Cu(OTf)2, Mg(OTf)2, Zn(OTf)2, Yb(OTf)3, Y(OTf)3, Bi(OTf)3, La(OTf)3 and Sc(OTf)3), different solvents (e.g., CH2Cl2, CHCl3, CH3CN, CH3NO2, n-hexane, and dioxane), temperatures (90–110 °C), and
  • various substituted anilines, primary arylamides, and sufonylamides 20 and 2,5-DMTHF (2) in the presence of 10 mol % MgI2 etherate in MeCN at 80 °C (Scheme 9a). MgI2 etherate is a main-group Lewis acid catalyst that selectively activates electron-rich aromatic amines. This is a mild, efficient, and highly
PDF
Album
Review
Published 27 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • example, when esters 1a are subjected to Lewis acid-induced denitration, highly electron-deficient enones (reaction b) [4] are obtained. The latter compounds are highly reactive and undergo reaction with, e.g., mercaptoacetaldehyde affording thiophenes (reaction c) [5] or with activated (hetero)aromatic
  • compounds to give diarylated (oxoalkyl)malonates [6]. In the reaction using tin(II) chloride as the Lewis acid, the ring opening and nucleophilic attack of the nitro group occur, to produce functionalized isoxazolines (reaction d) [7]. In contrast, denitration under basic conditions generates highly
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Asymmetric tandem conjugate addition and reaction with carbocations on acylimidazole Michael acceptors

  • Brigita Mudráková,
  • Renata Marcia de Figueiredo,
  • Jean-Marc Campagne and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 881–888, doi:10.3762/bjoc.19.65

Graphical Abstract
  • of −7.13 eV and an even more negative NBO charge of −0.368 at the C-2 position. We can confer from these data that Zn enolates obtained from acylimidazoles are somewhat less reactive than silyl enol ethers obtained in the Lewis acid-promoted conjugate addition of Grignard reagents [23]. This finding
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • ). A direct selective C4-alkylation of pyridine has been reported by the groups of Hiyama [62] (Scheme 12a) and Zhang [63] (Scheme 12c) in 2010 and 2020, respectively. The Hiyama group developed a C-4-selective alkylation of pyridines using a Ni/Lewis acid cooperative catalytic system in combination
  • with a bulky N-heterocyclic carbene ligand and (2,6-t-Bu2-4-Me-C6H2O)2AlMe (MAD) as the Lewis acid which allowed the direct C-4 alkylation of pyridines 1 (Scheme 12a). With the optimized reaction conditions in hand the group also screened the alkene and pyridine substrate scope which resulted C4
  • nickel Lewis acid catalyst with amino pendant linked NHC complex (Scheme 21). In addition, the authors were able to isolate the bimetallic intermediate structure η2,η1-pyridine–Ni(0)–Al(III) complex 112, as a support for their mechanism for the para-C–H functionalization. They further investigated the
PDF
Album
Review
Published 12 Jun 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • ) chloride (Scheme 26). Alkyne–carbonyl metathesis is proposed to proceed via [2 + 2] cycloaddition and –reversion steps, catalysed by a Brønsted or Lewis acid, with the catalyst proposed to form a σ-complex with the carbonyl group and/or a π-complex with the alkyne [68]. 3.7 Hydroarylation The construction
PDF
Album
Review
Published 22 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • Following the seminal work of Feringa in 1997 [21], the tandem asymmetric organozinc conjugate addition followed by subsequent aldol reaction was scarcely applied in the last decade. Welker and Woodward studied the reaction of zinc enolates 2 with chiral acetals 3 (Scheme 2) [22]. The Lewis acid (TiCl4 or
  • the transient iminium species 68 to afford the corresponding aminomethylation products 69 (Scheme 18) [50]. As seen from Table 2, the diastereoselectivities were somewhat compromised compared to what one can expect from the reactions of cyclic enolates. This erosion was likely caused by Lewis acid
  • developed a Lewis acid-promoted conjugate addition to unreactive Michael acceptors such as amides or vinyl heterocycles [60]. Trimethylsilyl triflate or boron trifluoride-activated unsaturated amides underwent highly efficient and enantioselective addition of Grignard reagents. When this methodology was
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • final ring-opened adduct 37. Copper-catalyzed reactions In 2009, Pineschi and co-workers explored the Cu-catalyzed rearrangement/allylic alkylation of 2,3-diazabicyclo[2.2.1]heptenes 47 with Grignard reagents 48 (Scheme 8) [41]. The reaction is thought to proceed via the Lewis acid-catalyzed [3,4
  • success of the reaction, hypothesizing it inhibited the classical [3,3]-sigmatropic Lewis acid-catalyzed rearrangement often observed. Both alkyl and aryl Grignard reagents were amenable to the reaction; however, heteroaryl Grignard reagents resulted in poor conversion. The Cu-catalyzed borylative
  • the Lewis acid cocatalyst AgSbF6 was removed from the reaction mixture, it was noted only ring-opened 1,2-hydroxy adducts were formed, so it is likely the Lewis acid is required for dehydration. In contrast, when N-pyrimidinylbenzimidazole derivatives were used, the 1,2-C–H addition product was
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • functionalization of other heteroaromatic derivatives (24j, 87% yield). It should be noted that the presence of zinc triflate, a Lewis acid, was used for the activation of the electrophilic source VI. Cobalt catalysis: In 2017, Wang described the Cp*Co(III)-catalyzed trifluoromethylthiolation of 2-phenylpyridine
PDF
Album
Review
Published 17 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • reactivity to be rendered catalytic, and exhibit catalysis outwith Lewis acid-type activation. These exchange reactions have allowed redox-neutral catalysis complementary to and beyond the redox catalysis of the transition metals. Boron, aluminium, gallium, and indium have all been demonstrated in catalytic
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis
  • precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization (including SmI2), Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition, and biocatalysis. In particular, the purpose will focus on the
PDF
Album
Review
Published 03 Mar 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • compounds, acylation is possible by an organic acid chloride/acid anhydride and a Lewis acid [6][7]. In the course of the development of ionic liquids (ILs) as a reaction medium for chemical reactions [8][9], the Friedel–Crafts reaction was also examined [10][11][12][13][14][15][16]. First protocols were
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • analog 26 should also be a reactive dienophile [51], but is a less useful building block, as it reacts twice and the adducts will not be as easily desulfonylated. The dienophile 7 reacts with a wide range of dienes at room temperature, without the need for a Lewis acid catalyst. This is particularly
  • give difficulties (Scheme 11a) [42]. The reactivity of the oxy-electrophiles can be enhanced by adding a Lewis acid catalyst such as titanium(IV) isopropoxide [59]. In this way, also epoxides can be smoothly reacted with lithiated dithiins, and both allyl and homoallyl alcohols can thus be prepared in
  • alcohol 66 can be lithitated and reacted with a range of electrophiles, even without the need for a Lewis acid catalyst, and good levels of stereoinduction can be achieved. The method was used for the synthesis of a range of hexose sugars, as well as iminosugars (viz 66 → 67 → 68), wherein the piperidine
PDF
Album
Review
Published 02 Feb 2023

Organophosphorus chemistry: from model to application

  • György Keglevich

Beilstein J. Org. Chem. 2023, 19, 89–90, doi:10.3762/bjoc.19.8

Graphical Abstract
  • . elaborated a Lewis acid-catalyzed one-pot synthesis of phosphinates and phosphonates staring from pyridinecarboxaldehydes and diarylphosphine oxides [2]. This protocol is the analogy of the Pudovik reaction, followed by the phospha-Brook rearrangement applied mainly for the synthesis of phosphoric ester
PDF
Editorial
Published 25 Jan 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • using acyl chloride 6b with an isobutyl side chain is its low volatility in contrast to the highly volatile compound 6a. The aza-Nazarov product 7b was isolated in 61% yield with 20 mol % of AgOTf at 80 °C (Table 1, entry 5). The use of TMSOTf as a Si-based Lewis acid catalyst with 20 mol % loading
  • of catalyzing the reaction via anion binding, AgOTf stands out as the optimal Lewis acid for this transformation. The aza-Nazarov cyclization of 3,4-dihydroisoquinolines with TMS-substituted α,β-unsaturated acyl chlorides proceeds efficiently in the presence of AgOTf (20 mol %) in CH3CN at 80 °C to
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • , as illustrated by Baldwin in the synthesis of 9,10-deoxytridachione [18]. In a further demonstration of the versatility of tetraenes connected to α’-methoxy-γ-pyrone, the synthesis of both crispatene and photodeoxytridachione was accomplished by Trauner through the Lewis acid-catalyzed 6π-disrotatory
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022
Other Beilstein-Institut Open Science Activities