Search results

Search for "dearomatization" in Full Text gives 40 result(s) in Beilstein Journal of Organic Chemistry.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • , which provided the products in high yields with up to 33% ee [19]. In 2023, García Mancheño and co-workers reported the tetrakis(iodotriazole) 3-catalyzed dearomatization of halogen-substituted pyridines 4, which formed the corresponding products 5 in high yields with up to 90% ee (Figure 1b) [20
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Deep-blue emitting 9,10-bis(perfluorobenzyl)anthracene

  • Long K. San,
  • Sebastian Balser,
  • Brian J. Reeves,
  • Tyler T. Clikeman,
  • Yu-Sheng Chen,
  • Steven H. Strauss and
  • Olga V. Boltalina

Beilstein J. Org. Chem. 2025, 21, 515–525, doi:10.3762/bjoc.21.39

Graphical Abstract
  • , allows a tentative conclusion that photooxidation proceeds via dearomatization of the central ring due to the formation of the endoperoxide (Figure 4). This suggestion is also supported by a recent work of Sun and co-workers where they observed and structurally characterized the endoperoxide of 9,10-ANTH
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • alternative pathway which occurs is the transformation of the α,β-unsaturated imine into the corresponding enamine C, which attacks to the azlactone leading to the addition subproduct 49’, also observed in the catalytic reactions. Also in 2020, Lu and co-workers reported an enantioselective dearomatization of
  • azlactones. Enantioselective dearomatization of indoles by a (3 + 2) cyclization with azoalkenes catalyzed by a chiral phosphoric acid. Synthetic applicability of the pyrroloindoline derivatives. Chiral phosphoric acid-catalyzed (2 + 3) dearomative cycloaddition of 3-alkyl-2-vinylindoles with azoalkenes
PDF
Album
Review
Published 10 Dec 2024

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • via a radical mechanism and the presence of terminal alkynes was found to be crucial for the smooth progression of the reaction, which suggested that the reaction proceeded through the same copper vinyl allenylidene intermediate (Scheme 23). Yne-allylic substitutions through dearomatization and
  • rearomatization In 2023, Lin and He et al. [72] achieved the challenging dearomatization of heteroarenes through d-orbital electron of the transition-metal center and thus completed the asymmetric substitutions with remote stereoselective control induced by alkynylcopper. A newly electron-rich ligand was
  • developed to enhance the back donation of d-orbital electron of copper, thereby achieving dearomatization and rearomatization with excellent yields and enantioselectivities. A series of synthesized useful diarylmethyl (Scheme 24, 24a–r) and triarylmethyl (Scheme 25, 26a–l) structures were obtained. Moreover
PDF
Album
Review
Published 31 Oct 2024

Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light

  • Francesco Gambuti,
  • Jacopo Pizzorno,
  • Chiara Lambruschini,
  • Renata Riva and
  • Lisa Moni

Beilstein J. Org. Chem. 2024, 20, 2722–2731, doi:10.3762/bjoc.20.230

Graphical Abstract
  • cyclization of the indole derivatives is the most popular (Scheme 1a). For instance, the efficient synthesis of spiro[indoline-3,2′-pyrrolidines] [8][9][10] or spiro-isoxazoles [11] through different dearomatization processes has been reported. Recently, Ramana and Dothe have proposed an elegant gold
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
  • ], considering a multitude of different reaction types, ranging from hydrogenations to epoxidations and dearomatization reactions. In a further study, the generalisation of the obtained model to reactions involving more complex substrates was demonstrated [123]. For the comparison of different reaction
PDF
Album
Review
Published 10 Sep 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • of aryl sulfoxides with difluoroenoxysilanes as nucleophile under mild reaction conditions [46]. This provided access to organosulfur compounds ortho-functionalized by CF2H. At the same time Peng and co-workers described the dearomatization of aryl sulfoxides using the same difluoroenol silyl ether
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • (1a) into o-quinone 5 revealed that the oxidation comprises two separate 1-electron oxidations [38]. Electrooxidative dearomatization has proven to be an effective synthetic tool [39]. However, we have not found examples of electrochemical oxidation of PAPs applied in synthesis. Here, we report the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • pathway of these natural products involves late-stage skeletal diversification triggered by enzymatic oxidative dearomatization (Scheme 4A). Specifically, FAD-dependent monooxygenase catalyzes the oxidative dearomatization of the aromatic intermediate, leading to subsequent homo- and hetero-dimerization
  • processes. The mechanism was initially postulated by Dreiding [30], and supported through isotope-labelling studies conducted by Abe and co-workers [31][32][33]. Subsequently, Cox et al. have elucidated the key enzyme SorbC responsible for the dearomatization process [34][35]. Scheme 4A illustrates the
  • dearomatization of 33 via enantioselective hydroxylation using molecular oxygen and generates cyclohexadienone 34. As demonstrated by Corey [36] and Nicolaou [37], highly reactive intermediate 34 likely dimerizes non-enzymatically through stepwise reactions involving (1) an initial intermolecular Michael addition
PDF
Album
Review
Published 23 Jul 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • mechanism suggested that dearomatization–aromatization pathways operated for the dehydrogenation of the alcohol and C–C bond formations. After the successful attempt of bidentate N-heterocyclic carbene-manganese complex-catalyzed N-alkylation of amines with alcohols at room temperature [41], Liu and Ke's
PDF
Album
Review
Published 21 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • result with some effort because a dearomatization, followed by aromatization, was necessary to achieve the goal. With [Rh(CO)2Cl]2 or [Rh(COD)2]BF4 as the catalyst under atmospheric pressure of CO (1 bar), good yields of the desired products were obtained (Scheme 24). Carbonylative functionalization of
PDF
Album
Review
Published 30 Apr 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • photocatalytic radical-mediated dearomatization, with H2O serving as the nucleophile [54] (Scheme 9A). Despite the presence of H2O in the reaction, the reduction of 38 to its corresponding radical anion 39 could occur without the need for hydrogen-bonding (Scheme 9B). Cyclic voltammetry measurements of NHPI
  • photoquenching experiments confirmed that 38 effectively quenched *Ir(ppy)3 under anhydrous conditions. Consequently, the SET reduction of 38, followed by fragmentation of 39 yielded α-oxy radical intermediate 40. Subsequently, the spirocyclization of 40 induced the dearomatization of the methoxy-substituted
PDF
Album
Perspective
Published 21 Feb 2024

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • indoline scaffolds (22a,b) via a radical-polar crossover mechanism (Figure 12C) [65], showcasing the power of conPET in dearomatization reactions. Finally, the synthesis of tetraphenylphosphonium chloride (20a) could be scaled up efficiently in an operationally very simple continuous-flow setup with only
PDF
Album
Review
Published 28 Jul 2023

Synthesis of tetrahydrofuro[3,2-c]pyridines via Pictet–Spengler reaction

  • Elena Y. Mendogralo and
  • Maxim G. Uchuskin

Beilstein J. Org. Chem. 2023, 19, 991–997, doi:10.3762/bjoc.19.74

Graphical Abstract
  • the use of 3-substituted furans. For example, the intramolecular Friedel–Crafts alkylation reaction (Scheme 1a) of alcohols [9][10][11], alkenes [12] or acetylenes [13] affords the desired tetrahydrofuro[3,2-c]pyridines. A related method is based on a Au(I)-catalyzed domino sequence dearomatization
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • commenced with the generation of 107 from cyclopentenone 105 and aryl aldehyde 106 in a three-step sequence. An oxidative dearomatization induced a [5 + 2] cycloaddition–pinacol rearrangement of 107 to 109, according to previous studies of the same group (Scheme 9) [59][60][61]. The key HAT-mediated
PDF
Album
Review
Published 02 Jan 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • group on C6 was introduced after cyclopropane ring-opening, ketone protection, epoxidation and reductive ring-opening of the resulting epoxide. A one-pot β-keto phosphonate formation/Horner–Wadsworth–Emmons reaction with formaldehyde afforded 38, a precursor for the key oxidative dearomatization-induced
  • have a bicyclo[2.2.2]octane precursor, which can be obtained by a dearomatization/Diels–Alder cascade. For Luo, the 1,2-shift forms bond C12–C13 through a cationic Wagner–Meerwein-type rearrangement. The B ring is obtained by a key bridgehead carbocation trapping, while the skeleton arises from an A
PDF
Album
Review
Published 12 Dec 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • - and stereoselectivities in the tandem intramolecular nucleophilic dearomatization of diphenyl-N-alkyl-N-benzylphosphinamides and reactions with different electrophiles under various reaction conditions [47]. They used both racemic and enantiopure diphenyl-N-methyl-N-(1-phenylethyl)phosphinamides 124
  • intramolecular nucleophilic dearomatization and protonation or electrophilic alkylation reactions, affording the corresponding dihydronaphthylene-fused γ-phosphinolactams 135–142. Methanol was used as the electrophile for protonation, while methyl iodide and allyl bromide were used as electrophiles for
PDF
Album
Review
Published 22 Jul 2022

Regioselectivity of the SEAr-based cyclizations and SEAr-terminated annulations of 3,5-unsubstituted, 4-substituted indoles

  • Jonali Das and
  • Sajal Kumar Das

Beilstein J. Org. Chem. 2022, 18, 293–302, doi:10.3762/bjoc.18.33

Graphical Abstract
  • -cd]indoles 21 from the intramolecular cyclization of Ugi adducts 20 in moderate to good yields and excellent chemo-, regio-, and diastereoselectivity (Scheme 7) [17]. Mechanistically, the reaction involves a tandem gold(I)-catalyzed dearomatization/ipso-cyclization/Michael addition sequence to
PDF
Album
Commentary
Published 08 Mar 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • 74. Hydrolysis of the imine affords the final product 69. In 2020, Sun and Liu reported the iminyl cyclization could also be achieved with DMSO as a methyl-radical precursor [88]. In 2017, the Zhu group developed an Fe(acac)3-catalyzed cyanoalkylative dearomatization of N-phenylcinnamamides 75 for
  • of the aryl ring, a spirocyclic product 145 was formed via a radical cyclization/dearomatization process. Mechanistic investigations revealed the reaction operates through a radical pathway. In 2017, the Li group described a Ag-mediated, Fe-catalyzed alkylarylation of styrene derivatives 115 with α
PDF
Album
Review
Published 07 Dec 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • phosphoric acid catalysis, we developed a highly regio-, diastereo-, and enantioselective dearomatization reaction of 1-substituted 2-naphthols 115 and β,γ-alkynyl-α-imino esters 100. The highly functionalized naphthalenone derivatives 116 with an allene moiety, exhibiting both a quaternary stereocenter and
PDF
Album
Review
Published 15 Nov 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • ) [35]. During this early period, the group of Jacobsen also reported an asymmetric thiourea-catalyzed Reissert reaction of isoquinolines 21 (Scheme 5a) [36]. The mechanism proceeds by initial activation of the isoquinoline via N-acylation and subsequent dearomatization by a nucleophilic attack in the
PDF
Album
Review
Published 01 Sep 2021

Synthetic accesses to biguanide compounds

  • Oleksandr Grytsai,
  • Cyril Ronco and
  • Rachid Benhida

Beilstein J. Org. Chem. 2021, 17, 1001–1040, doi:10.3762/bjoc.17.82

Graphical Abstract
  • benzothiazole and benzimidazole-based sulfonylguanidine compounds were derived by the sulfonylation of the corresponding 2-guanidinobenzazoles and assayed as potential antimelanoma agents (Scheme 11C) [33]. Of note, a dearomatization of the benzothiazole ring was observed while grafting a sulfoguanidinyl group
PDF
Album
Review
Published 05 May 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • the dearomatization of β-naphthol promoted by visible light via intermolecular charge transfer (Scheme 29). In this method, β-naphthol anion 87 (β-naphthol 85 formed in the presence of base) is employed as electron donor to form EDA complex with electron acceptor perfluoroalkyl iodide 28. Single
PDF
Album
Review
Published 06 Apr 2021

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • ], and perform C–H functionalization through aerobic dearomatization of phenols [35]. These broad synthetic outcomes further led to a unified approach for the preparation of 1,2-oxy-aminoarenes by phenol–amine couplings (Scheme 10) [36]. We reported the formation of a C–N bond through copper-catalyzed
PDF
Album
Review
Published 24 Apr 2020
Other Beilstein-Institut Open Science Activities