Search results

Search for "imine" in Full Text gives 421 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • formed 17g in good yield and diastereoselectivity with decreased enantioselectivity, likely due to electronic effects. 6-Bromo- and 7-chloro-substituted substrates also provided 17h and 17i in good yields with moderate to good stereoselectivities. Next, Cbz-protected imine 7j was employed in the present
  • exchange from tetrafluoroborate to the halonium moiety to form chiral ion pair II. Attack of the chiral nucleophilic intermediate II to imine 7 leads to intermediate III. The latter is protonated by in the situ-formed potassium bicarbonate to form the desired product 17, together with the regenerated
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Vinylogous functionalization of 4-alkylidene-5-aminopyrazoles with methyl trifluoropyruvates

  • Judit Hostalet-Romero,
  • Laura Carceller-Ferrer,
  • Gonzalo Blay,
  • Amparo Sanz-Marco,
  • José R. Pedro and
  • Carlos Vila

Beilstein J. Org. Chem. 2025, 21, 533–540, doi:10.3762/bjoc.21.41

Graphical Abstract
  • yield decreased, possibly due to the formation of imine B, which might be favored by the dehydration effect of the molecular sieves. Conclusion In summary, a regioselective and diastereoselective vinylogous addition reaction of 4-alkenyl-5-aminopyrazoles to alkyl trifluoropyruvate has been studied
PDF
Album
Supp Info
Letter
Published 10 Mar 2025

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • popularization of dynamic covalent chemistry in the 1990s [251][252][253][254][255], macrocycle and cage synthesis using reversible reactions [256][257][258][259] like imine formation (Figure 7A) have led to advances in the synthesis of COFs [223][224] and discrete organic cages [260][261][262][263][264][265
  • ][344][345], which show early promise for low-symmetry cavities with catalytic potential [42][43][44][340]. Notably, Otte has used semi-stepwise self-assembly via imine formation/reduction to access a robust organic cage with reduced-symmetry and internal functionality able to chelate a copper(I) ion
  • quickly identified the triptycenyl-based imine cages of Mastalerz [301] as a strong starting point because: (i) they offered efficient, modular assembly; (ii) all of the complexity could be confined to the privileged triptycene motifs, which would present rigid internal vectors into the cavity for
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

Three-component reactions of conjugated dienes, CH acids and formaldehyde under diffusion mixing conditions

  • Dmitry E. Shybanov,
  • Maxim E. Kukushkin,
  • Eugene V. Babaev,
  • Nikolai V. Zyk and
  • Elena K. Beloglazkina

Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18

Graphical Abstract
  • with ʟ-proline participation is shown in Scheme 4. In the first step, formaldehyde reacts with proline, forming an imine salt 17, which then reacts with the diketone 1. The resulting intermediate 18 eliminates a proton and the anion of ʟ-proline, and then the methylenebenzophenone 20 reacts with
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • . Among various Lewis acids, only Cu(OTf)2 in combination with TMSCN was effective or a valuable alternative was the use of acetone cyanohydrin combined with a catalytic amount of TEA (5 mol %). The mechanism involves the formation of an imine facilitating the addition of the nitrile group. Among the
  • is plausible to assume as the key step for ring formation an aza-Diels–Alder reaction between the alkyne and the imine generated by dehydration between the aldehyde and aniline. The catalyst promotes the formation of the imine XI, while the high regioselectivity is ascribable to the favored
  • the initial formation of imine XII and enamine XIII, reacting each other in a mechanism that involved two Mannich-type reactions (Scheme 15) [32]. Activation of terminal alkynes with Cu(OTf)2 is the key step for the preparation of furoquinoxalines 22 from o-phenylenediamine and ethyl glyoxylate
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • reaction pathway was proposed [56]. The first step is a CPA C27-catalyzed condensation giving rise to the imine intermediate followed by isomerization to the enamine stabilized by CPA. An enantioselective intramolecular cyclization followed by dehydration then afford the aromatic ring and desired product
  • was calculated to be 32.9 kcal/mol. The proposed reaction pathway starts with CPA activation of the substrates, nucleophilic addition and dehydration leading to imine intermediate Int-59. After dehydration to Int-59, two possible approaches could be utilized. The first of the two possible approaches
PDF
Album
Review
Published 09 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
PDF
Album
Review
Published 06 Jan 2025

Reactivity of hypervalent iodine(III) reagents bearing a benzylamine with sulfenate salts

  • Beatriz Dedeiras,
  • Catarina S. Caldeira,
  • José C. Cunha,
  • Clara S. B. Gomes and
  • M. Manuel B. Marques

Beilstein J. Org. Chem. 2024, 20, 3281–3289, doi:10.3762/bjoc.20.272

Graphical Abstract
  • benziodoxol(on)es can be found in the literature, including reagents featuring cyclic aliphatic amine moieties (III) [15], phthalimidates (IV) [16], and carbazoles (VII) [19]. Minakata and co-workers proposed an innovative approach for transferring imine groups using iodane-containing (diarylmethylene)amino
  • groups (V), which proved to be useful in the transfer of imine radicals [17]. Bolm et al. contributed also to this topic by introducing a sulfoximidoyl-containing benziodoxolone (VI) [18]. Recently, our group disclosed the first HIRs bearing a primary amine moiety, the benzylamine benziodoxolone reagent
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2024

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • covered in this review are hydrogen-bond donors such as thioureas and squaramides, Brønsted bases such as tertiary amines, and Brønsted acids such as chiral phosphoric acids. As depicted in Figure 4, a bifunctional squaramide is able to activate both an α,β-unsaturated imine through hydrogen bonding with
  • (Scheme 3). The reaction of 3-isothiocyanatooxindoles 4 and ketimines 7 led to the (3 + 2) cycloaddition through the C=C bond of the α,β-unsaturated imine instead of the C=N bond, affording various spirocyclic derivatives 8 with excellent yields (92–98%), diastereoselectivities (15:1–20:1 dr), and
  • enantioselectivities (90–99% ee). This result could be attributed to the higher steric hindrance at the carbon atom of the imine. On the other hand, the reaction of 3-isothiocyanatooxindoles 4 and dienimines 9 afforded the cascade cycloadducts 10 in high yields (74–94%) and excellent diastereoselectivities (>20:1 dr
PDF
Album
Review
Published 10 Dec 2024

Synthesis of extended fluorinated tripeptides based on the tetrahydropyridazine scaffold

  • Thierry Milcent,
  • Pascal Retailleau,
  • Benoit Crousse and
  • Sandrine Ongeri

Beilstein J. Org. Chem. 2024, 20, 3174–3181, doi:10.3762/bjoc.20.262

Graphical Abstract
  • isomers, two due to the E and Z isomers of the imine group (–N=CH–) and two due to the syn/anti-conformers of the amide bond (–NH-CO–). Experimentally, the E isomer is often more stable and so, predominant. The strong correlation between the NH and CH of the imine observed in 2D 1H-1H NOE experiments for
  • the two conformers of hydrazones 3e and 3f (see Supporting Information File 1) is in accordance with the E stereoisomers. Furthermore, another correlation is observed for one conformer involving the NH of the imine on one side and the α-proton and the CH2 of the Cbz of the phenylalanine on the other
  • hydrazine [36], allowed the expected compounds 6e and 6f to be obtained in good yields. This methodology was applied to the previous hydrazides 5a–d giving the corresponding compounds 6a–d in similar yields. As expected, no isomerization occurred during the oxidation, leading exclusively to the imine and
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2024

Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies

  • Lucía Campos-Prieto,
  • Aitor García-Rey,
  • Eddy Sotelo and
  • Ana Mallo-Abreu

Beilstein J. Org. Chem. 2024, 20, 3151–3173, doi:10.3762/bjoc.20.261

Graphical Abstract
  • solvolysis of the polyacetates. Also, the Ugi reaction gave the best results when imine preformation was implemented. In this preliminary paper, it was observed that the ferulic derived part was highly significant and for this reason, further experiments were conducted by Galante et al. [37] maintaining the
  • , and either sodium hydroxide or sodium hydrogen sulfide to obtain a cyclic imine. Subsequently, the U-3CR is performed, where the cyclic imine reacts with an electron-deficient 2-fluorobenzoic acid and an isocyanide to yield a bisamide. Then, the bisamide undergoes an intramolecular SNAr reaction to
PDF
Album
Review
Published 03 Dec 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • , with TBAI as a co-catalyst, up to 74% yields (Table 1). The inactivity of porphyrin 18 was attributed to the inaccessibility of the inner core imine due to its planar structure. The mechanism of the epoxide ring-opening reaction was elucidated by DFT calculations, which suggested that the macrocycle
  • and imine groups (Figure 7). Later the same group synthesized a series of five macrocycles derived from tetraphenylporphyrin (H2TPP) with a different number of ethyl substituents at the β-positions; H2EtxTPPs (x = 0, 2, 4, 6, 8; 18, 45–47, 26, Figure 8) to explore the effect of electronic and steric
  • organocatalysis can be summarized in the following statements: (1) using highly distorted nonplanar macrocyclic systems with an easy access to inner –NHs and basic imine moieties (by Senge, Hill, and co-workers [61][62][63]), (2) using monomeric and aggregated forms of achiral/chiral planar amphiphilic porphyrin
PDF
Album
Review
Published 27 Nov 2024

Synthesis of pyrrole-fused dibenzoxazepine/dibenzothiazepine/triazolobenzodiazepine derivatives via isocyanide-based multicomponent reactions

  • Marzieh Norouzi,
  • Mohammad Taghi Nazeri,
  • Ahmad Shaabani and
  • Behrouz Notash

Beilstein J. Org. Chem. 2024, 20, 2870–2882, doi:10.3762/bjoc.20.241

Graphical Abstract
  • with 1,10-phenanthroline as cyclic imine under solvent-free conditions for the synthesis of pyrrole-fused phenanthroline. This reaction proceeds via in situ formation of zwitterion I through reaction of the aldehyde and malononitrile followed by 1,3-dipolar cycloaddition (Scheme 1a) [41]. Chen and co
  • -workers reported a one-pot three-component reaction (3-CR) of sulfamate‐derived cyclic imine, isocyanide, and acetylenedicarboxylate. In this reaction too, the pyrrole-fused sulfamate is synthesized through intermediacy of the in situ-formed zwitterion II and [1 + 2 + 2] annulation reaction (Scheme 1b
  • pyrroles. In our recent studies, we prepared pyrrole-fused dibenzoxazepines via an Ugi reaction. Here, the reaction of benzoxazepine imine and acetylenedicarboxylate leads to the Huisgens 1,4-dipole zwitterion in situ, which is trapped by an isocyanide through the cyclization process (Scheme 1c) [44][45
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2024

Access to optically active tetrafluoroethylenated amines based on [1,3]-proton shift reaction

  • Yuta Kabumoto,
  • Eiichiro Yoshimoto,
  • Bing Xiaohuan,
  • Masato Morita,
  • Motohiro Yasui,
  • Shigeyuki Yamada and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2024, 20, 2776–2783, doi:10.3762/bjoc.20.233

Graphical Abstract
  • ]. As a diastereoselective synthesis, reductive coupling reactions of commercially available 4-bromo-3,3,4,4-tetrafluoro-1-butene and glyceraldehyde 10a, its imine derivative 11, or Garner's aldehyde 10b have been reported [23][24]. Although the diastereoselectivities were low in some cases, the
  • the NOESY spectrum of the imine (R)-16c, the stereochemistry of the imines (R)-16 was determined as E [36]. Among the imines thus obtained, (R)-16b was used to investigate the optimum reaction conditions (Table 1). Treatment of (R)-16b with 1.2 equiv of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) in THF
  • , the negative charge generated on the imine carbon can be delocalized, hence the transition state is stabilized and the reaction proceeds smoothly. On the other hand, when the substituent R is an alkyl group, the negative charge generated on the imine carbon is an unstable factor, and therefore the
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • . Mechanistically, this transformation can be understood as follows: first, a Br/Cl/CF3 radical is formed via anodic oxidation, which subsequently attacks the olefin. The newly formed benzyl radical is oxidized to a carbocation, which undergoes nucleophilic attack by DMF. Hydrolysis of the imine delivers the final
PDF
Album
Review
Published 09 Oct 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • enantioselectivities (90–99% ee) and good yields (75–94%) have been achieved on a wide range of aromatic and aliphatic N-acylimines 2 using chiral 3,3’-diaryl-BINOL 3 as catalyst (Scheme 2). The reaction proved to be highly tolerant to the nature of the R1 substituent in imine 2, demonstrating high yields and
  • 11. It was proposed, that the internal hydrogen bond between the catalyst 11 and the P=O fragment of the protecting group of imine 9 is responsible for the observed high enantioselectivities (76–98% ee). The scope included a wide range of substrates, such as aromatic, heteroaromatic, aliphatic, and α
  • high (9:1 and >20:1), along with impressive enantioselectivity levels (92% and 98% ee). A slight loss of diastereoselectivity in the reaction of the PMP-imine with (Z)-crotyldioxaborinane 30 was attributed to the spontaneous isomerisation of the imine to the cis-isomer. The crotylboronates were
PDF
Album
Review
Published 16 Sep 2024

Improved deconvolution of natural products’ protein targets using diagnostic ions from chemical proteomics linkers

  • Andreas Wiest and
  • Pavel Kielkowski

Beilstein J. Org. Chem. 2024, 20, 2323–2341, doi:10.3762/bjoc.20.199

Graphical Abstract
  • (IEDDA), and recently, azomethine imine (AMIs)–isonitrile ligation [37][55][56][57][58][59][60]. The kinetics, chemoselectivity, stability, and steric demand of the bioorthogonal tag attached on the probe are decisive factors during the selection procedure [61][62]. The most commonly used strategy is
PDF
Album
Review
Published 12 Sep 2024

Stereoselective mechanochemical synthesis of thiomalonate Michael adducts via iminium catalysis by chiral primary amines

  • Michał Błauciak,
  • Dominika Andrzejczyk,
  • Błażej Dziuk and
  • Rafał Kowalczyk

Beilstein J. Org. Chem. 2024, 20, 2313–2322, doi:10.3762/bjoc.20.198

Graphical Abstract
  • donors [29]. In the context of imine catalysis using acid, the catalyst AQ-1's ability to abstract protons from bisthiomalonate, thereby activating the nucleophile may be at least restricted. Consequently, we chose to investigate the impact of the thioester group on the outcome, including stereochemical
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
  • structural overlap is present [121]. For every reaction, the imine is categorised as either an E- or Z-imine, based on the sign of the recorded enantiomeric excess. Further, molecular descriptors, either physicochemical properties or topological, are calculated for all reaction partners. This data is used to
  • develop a comprehensive model, finding that imine parameters govern the defining transition state and hence the preferred enantiomer. In a focused modelling, two separate models are constructed, one for all E- and Z-imines, respectively, finding substrate–catalyst matching is important for E- and Z-imines
  • . The focused correlations enabled the authors to identify subtle mechanistic differences between reactions of E- and Z-imines, such as the role of steric and electronic properties of the imine for E- and Z-imines, respectively. The two-stage workflow, using the comprehensive model to distinguish the
PDF
Album
Review
Published 10 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • Scheme 2 but is open to debate. Thus, formamide adds to the [D1]-aldehyde A to form hemiaminal B which eliminates D2O to give imine D. Deprotonation of formamide D forms the resonance and zwitterrion-stabilized isocyanate E [22]. We then hypothesize that zwitterion E rearranges with loss of CO2 to form
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation

  • Andrey R. Galeev,
  • Maksim V. Dmitriev,
  • Alexander S. Novikov and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2024, 20, 2208–2216, doi:10.3762/bjoc.20.188

Graphical Abstract
  • of acetone and amines 2 leads to the formation of acetone imine/enamine (reaction 1, Scheme 6). Nucleophilic addition of an enamine to the most electron-deficient carbonyl group (C1=O, adjacent to the EWG) of the 1,3-diketones 1 gives the acyclic carbinol I (reaction 2, Scheme 6), followed by the
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • lack of geometrical isomerization of the C–N double bond of the dithiolation products [32]. The thioselenation product 6’, an imine derivative, can be converted to a β-lactam derivative by [2 + 2] cycloaddition with ketene generated in situ. For example, thioselenation of RNC (R = (EtO)2P(O)–CH2) gave
  • imine 6’ (96%), which underwent [2 + 2] cycloaddition with methoxyketene to afford β-lactam derivative 7 (79%) (Scheme 4). Selective replacement of the PhSe group of 7 with a 3-butanonyl group (34%) and the subsequent intramolecular Horner–Emmons reaction successfully led to carbacephem skeleton 8 (96
PDF
Album
Perspective
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • agrochemical industries. The (3 + 2)-cycloaddition between nitrile imines and alkenes represents one of the most efficient strategies to prepare these azacycles. However, conventional methods for the generation of the nitrile imine involved the use of unstable hydrazonoyl halides or the oxidation of aldehyde
  • the electrogeneration of iodine in the aqueous phase. Under high stirring, the latter would react with NH-arylhydrazones 72 in the organic phase to furnish the N-iodo hydrazonium 75 and ultimately the nitrile imine 76 under basic conditions provided by the cathodic process. The critical role of the in
PDF
Album
Review
Published 14 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • , was not observed. In 2016, Sashidhara et al. reported the catalytic effect of Ag(OTf) on GBB reactions, postulating its role in activating the attack of the isocyanides onto the imine intermediates [7]; some years later Liu et al. reported a similar role of AgOAc [8]. Although the reaction was tested
  • significantly more active than 9, owing to higher rigidity and the correct position of the ortho H atoms in close proximity to the σ-holes on the I atom. The authors demonstrated that hydrogen bonding between H in ortho position of 8 and both O atom of aldehyde and N atom of imine significantly increased the
  • its nucleophilicity and improving its orientation. Furthermore, Ser105 formed a strong hydrogen bond also with benzaldehyde, making it a better electron acceptor. Interestingly, also the imine intermediate showed strong interaction with Thr40 and Ser105 residues, so becoming a good electrophile for
PDF
Album
Review
Published 01 Aug 2024
Other Beilstein-Institut Open Science Activities