Search results

Search for "nitrile" in Full Text gives 258 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthetic approach to borrelidin fragments: focus on key intermediates

  • Yudhi Dwi Kurniawan,
  • Zetryana Puteri Tachrim,
  • Teni Ernawati,
  • Faris Hermawan,
  • Ima Nurasiyah and
  • Muhammad Alfin Sulmantara

Beilstein J. Org. Chem. 2025, 21, 1135–1160, doi:10.3762/bjoc.21.91

Graphical Abstract
  • derivatives named alphabetically starting from the original borrelidin 1, designated as borrelidin A (Table 1, entry 1). A rare nitrile moiety at C12 of the macrolide ring in borrelidin A is present in most members of the borrelidin family (Table 1, entries 4, 5, 7–11, 13–16, and 18), except for borrelidin B
  • , N-acetylborrelidin B, borrelidin CR2, borrelidin I, and borrelidin N (Table 1, entries 2, 3, 6, 12, and 17). Borrelidin B (Table 1, entry 2), a tetrahydroborrelidin derivative with an aminomethyl group instead of the nitrile in position 12 of the macrolide, was isolated from the marine-derived
  • understanding of nitrile formation [24]. There are five total syntheses of borrelidin in the literature, reported by Morken et al. (2003) [25], Hanessian et al. (2003) [26], Ōmura et al. (2004) [27], Theodorakis et al. (2004) [28], and Ōmura et al. (2007) [29]. Additionally, there are twelve synthetic studies
PDF
Album
Review
Published 12 Jun 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • and co-workers (2021) utilized oxime chloride and cinnamic acid to synthesize O-acylhydroxamate 68 in good yield (Scheme 23A) [57]. In the presence of a base, oxime chloride was converted to electrophilic nitrile oxide 69 and reacted with carboxylic acid to form the cyclic intermediate 70. On the
PDF
Album
Review
Published 28 May 2025

On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals

  • Daniel Straub,
  • Markus Gross,
  • Mona E. Arnold,
  • Julia Zolg and
  • Alexander J. C. Kuehne

Beilstein J. Org. Chem. 2025, 21, 964–998, doi:10.3762/bjoc.21.80

Graphical Abstract
  • )methyl (TTBrM) radical exhibits λem = 593 nm and ϕ of 0.8% (in dichloromethane-solution, at room temperature) [50][51]. Functionalization of TTM in the para-position has also been achieved with a pseudo-halide, namely a nitrile group. While the absorption and emission spectra are slightly
  • bathochromically shifted for mono- and bis-para-nitrile TTM radicals, successive nitrilation increases the ϕ to 4.6% and 7.4% (in cyclohexane) [53]. This improvement is most likely induced by symmetry breaking, resulting in excited states with some charge-transfer character. Moreover, the photostability of such
  • nitrile-bearing TTM equivalents is greatly enhanced. Interestingly, much like TTM, TTBrM exists also as enantiomeric propellers; however, in TTBrM radicals the resolved enantiomers are stable at room temperature, making these molecules interesting as chiral emitters with glum of 7 × 10−4, despite their
PDF
Album
Supp Info
Review
Published 21 May 2025

Regioselective formal hydrocyanation of allenes: synthesis of β,γ-unsaturated nitriles with α-all-carbon quaternary centers

  • Seeun Lim,
  • Teresa Kim and
  • Yunmi Lee

Beilstein J. Org. Chem. 2025, 21, 800–806, doi:10.3762/bjoc.21.63

Graphical Abstract
  • conditions and shows broad applicability to di- and trisubstituted allenes. Its practicality is demonstrated through the gram-scale synthesis and functional group transformations of amines, amides, and lactams, emphasizing its versatility and synthetic significance. Keywords: α-quaternary nitrile; Cu
  • for the in situ generation of hydrogen cyanide (Scheme 1a). This method achieved high regioselectivity and enantioselectivity, highlighting the potential of allene hydrocyanation for the synthesis of complex nitrile-containing products. In another approach, the Minakata group used electrophilic
  • cyanating reagents, such as p-toluenesulfonyl cyanide (TsCN) and N-cyano-N-phenyl-p-toluenesulfonamide [29]. The hydroboration of allenes with 9-BBN (9-borabicyclo[3.3.1]nonane) as the hydride source, followed by regioselective cyanation with allylic boranes, provided nitrile-substituted quaternary carbon
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2025

Development and mechanistic studies of calcium–BINOL phosphate-catalyzed hydrocyanation of hydrazones

  • Carola Tortora,
  • Christian A. Fischer,
  • Sascha Kohlbauer,
  • Alexandru Zamfir,
  • Gerd M. Ballmann,
  • Jürgen Pahl,
  • Sjoerd Harder and
  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2025, 21, 755–765, doi:10.3762/bjoc.21.59

Graphical Abstract
  • subsequent step to yield hydrazino nitrile 2 (Table 2) from which α-hydrazino acids could be obtained by harsher hydrolysis conditions. It is important to note that compound 12 also exhibits geometric isomerism (Figure 2 depicts the lower-energy configuration), which arises from the newly formed CN double
  • short Ca···N distance to the product nitrile nitrogen atom in 13. Synthesis of the calcium diphenyl phosphate model complex 4 from phosphoric acid 3 and Ca(OiPr)2. Hydrocyanation of 1 catalyzed with calcium phosphate model complex 4. Asymmetric hydrocyanation of hydrazones catalyzed by calcium–BINOL
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction

  • Thomas Brandt,
  • Pascal Lentes,
  • Jeremy Rudtke,
  • Michael Hösgen,
  • Christian Näther and
  • Rainer Herges

Beilstein J. Org. Chem. 2025, 21, 490–499, doi:10.3762/bjoc.21.36

Graphical Abstract
  • of amino-N-acetyl diazocine by deprotection of the carbamate. Reaction conditions for the attempted Ullmann-type reaction with sodium azide. Reaction conditions for the palladium-catalyzed introduction of a nitrile functionality. Quantum yields of N-acetyl diazocine 1 in organic and aqueous media
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2025

Synthesis of electrophile-tethered preQ1 analogs for covalent attachment to preQ1 RNA

  • Laurin Flemmich and
  • Ronald Micura

Beilstein J. Org. Chem. 2025, 21, 483–489, doi:10.3762/bjoc.21.35

Graphical Abstract
  • such reactive preQ1 and (2,6-diamino-7-aminomethyl-7-deazapurine) DPQ1 ligands. The readily accessible key intermediates of preQ0 and DPQ0 (both bearing a nitrile moiety instead of the aminomethyl group) were reduced to the corresponding 7-formyl-7-deazapurine counterparts. These readily undergo
  • -diaminopyrimidin-4(3H)-one to afford preQ0 (7), as originally reported by Townsend et al. [30]. The next step, namely the reduction of the nitrile moiety by hydrogenation is critical and notoriously difficult due to the low reactivity of this group in preQ0 [26]. We solved this problem by applying strongly acidic
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2025

The effect of neighbouring group participation and possible long range remote group participation in O-glycosylation

  • Rituparna Das and
  • Balaram Mukhopadhyay

Beilstein J. Org. Chem. 2025, 21, 369–406, doi:10.3762/bjoc.21.27

Graphical Abstract
  • participating group for glycosylation reactions (Scheme 19a) [157][158]. The oxocarbenium ion 110 formed in the process of the glycosylation reaction is stabilised from the α-face by the nitrile on the methyl ether via its π-electrons. This enables the attack of the approaching acceptor molecule from the β-face
PDF
Album
Review
Published 17 Feb 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • - and P-containing nucleophiles to MBH carbonates of isatins and convenient synthesis of diverse functionalized 3-substituted oxindole derivatives. Results and Discussion Initially, the reaction conditions were briefly examined by using MBH nitrile of isatin 1a and p-toluidine (2a) as model reaction. It
  • such as DABCO, DBU, triethylamine, and K2CO3 also resulted in the significant reduction of the yields. Therefore, the reaction of MBH nitrile of isatins and arylamines can be simply carried out in toluene at room temperature in the presence of a catalytic amount of DMAP. With the optimized reaction
  • derivatives. At first, a Lewis base attack at the α-position of the MBH nitrile of isatin resulted in the intermediate A with elimination of carbon dioxide and tert-butoxide ion. Secondly, the product 3 was produced by the SN2 substitution of the Lewis base by the arylamine. When MBH maleimides of isatin were
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Three-component reactions of conjugated dienes, CH acids and formaldehyde under diffusion mixing conditions

  • Dmitry E. Shybanov,
  • Maxim E. Kukushkin,
  • Eugene V. Babaev,
  • Nikolai V. Zyk and
  • Elena K. Beloglazkina

Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18

Graphical Abstract
  • method was successfully used to generate highly active nitrile oxides and nitrilimines for 1,3-dipolar cycloaddition reactions [19][20][21]. Based on our previous experience with diffusion mixing, we assumed that formaldehyde vapor diffusion into the reaction would lead to an extremely low concentration
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2025

Streamlined modular synthesis of saframycin substructure via copper-catalyzed three-component assembly and gold-promoted 6-endo cyclization

  • Asahi Kanno,
  • Ryo Tanifuji,
  • Satoshi Yoshida,
  • Sota Sato,
  • Saori Maki-Yonekura,
  • Kiyofumi Takaba,
  • Jungmin Kang,
  • Kensuke Tono,
  • Koji Yonekura and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2025, 21, 226–233, doi:10.3762/bjoc.21.14

Graphical Abstract
  • hydroamination and temporary protection of nitrile and phenolic hydroxy groups. The synthetic strategy enabled the efficient synthesis of the substructure of saframycins bearing isoquinoline and THIQ units in just four steps from the modular assembly of the three components. We also found the unexpected
  • coupling of alkyne 8, THIQ segment 9, and benzaldehyde would enable convergent assembly of the building blocks to produce 10 [43][44][45][46]. Removal of the cyclic acetal in 10 followed by Strecker-type conversion leading to an α-amino nitrile would enable tandem intramolecular cyclization with phenol to
  • thermodynamically more stable than its 5-exo counterpart 13. Thirdly, the 2,3-diaminobenzofuran would be utilized as a temporary protecting group for both the phenolic hydroxy group and the nitrile moiety. These functional groups are necessary for the aromatic A-ring to interact with DNA and for synthetic
PDF
Album
Supp Info
Letter
Published 28 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • intermediate 23 is captured by the L2Cu(II)(CN)2 complex 25 and then undergoes reductive elimination to provide the chiral nitrile product 22. Finally, the reduced [AQ–H]• and L2Cu(I)CN (24) are reoxidized at the anode to complete the catalytic cycle. In 2023, Xu and Lai developed a three-component system for
  • enantioenriched nitrile products 29. The proposed mechanism is illustrated in Figure 8. [Mes-Acr-Ph]+* is generated through the photoexcitation of the photocatalyst [Mes-Acr-Ph]+, which undergoes electron transfer to the heteroarene 28, resulting in the formation of the [Mes-Acr-Ph]• and heteroarene radical
  • enantioenriched nitrile products 89 and a reduced Cu(I) complex 94, which is reoxidized through anodic oxidation. The 1,2-diamine moiety is present in numerous natural products and bioactive compounds. In 2022, Xu et al. reported the Cu-catalyzed electrocatalytic diazidation of olefins with ppm-level catalyst
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • . Among various Lewis acids, only Cu(OTf)2 in combination with TMSCN was effective or a valuable alternative was the use of acetone cyanohydrin combined with a catalytic amount of TEA (5 mol %). The mechanism involves the formation of an imine facilitating the addition of the nitrile group. Among the
  • [3 + 2] cycloaddition reaction between azodicarboxylates and nitrile ylides XXXVI as 1,3-dipoles. The latter are generated from diazoalkanes under the coordination of the copper catalyst to form a carbenoid species that undergoes nucleophilic attack of the nitriles. This transformation has
PDF
Album
Review
Published 14 Jan 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • -Breslow-type intermediates with the chiral NHC-catalyst and subsequent deprotonation toward the nitrile product. Zhang, Wang, Ye, and co-workers utilized NHC-catalysis for the atroposelective synthesis of axially chiral diaryl ethers 59 and 61 [38]. This transformation was realized via desymmetrization of
PDF
Album
Review
Published 09 Jan 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • hydrogen bonding with the protonated tertiary amine. Then, a Michael addition of malononitrile to the azadiene takes place to obtain exclusively the (S)-intermediate A. Subsequently an intramolecular nucleophilic addition of the nitrile leads to the intermediate B, which undergoes tautomerization to
PDF
Album
Review
Published 10 Dec 2024

Ceratinadin G, a new psammaplysin derivative possessing a cyano group from a sponge of the genus Pseudoceratina

  • Shin-ichiro Kurimoto,
  • Kouta Inoue,
  • Taito Ohno and
  • Takaaki Kubota

Beilstein J. Org. Chem. 2024, 20, 3215–3220, doi:10.3762/bjoc.20.267

Graphical Abstract
  • and ECD data with those of the known psammaplysin derivative, psammaplysin F (2). Ceratinadin G (1) is a rare nitrile containing a cyano group as aminoacetonitrile, and is the first psammaplysin derivative possessing a cyano group. In vitro assays indicated that compound 1 displayed moderate
  • [25][26][27][28]. It is known that natural nitrile compounds are biosynthesized through various mechanisms [29]. Rinehart and co-workers demonstrated that 2-(3,5-dibromo-4-hydroxyphenyl)acetonitrile is biosynthesized from ʟ-tyrosine via 3,5-dibromo-ʟ-tyrosine, based on experiments using 14C- and 15N
  • -labeled ʟ-phenylalanine [19]. Therefore, the cyano group in bromotyrosine alkaloids containing the phenylacetonitrile moiety is derived from the α-carbon and amino group of ʟ-tyrosine. On the other hand, the biosynthesis of nitrile with a cyanoformamide moiety remains unclear. Ceratinadin G (1) represents
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2024

Synthesis of 2H-azirine-2,2-dicarboxylic acids and their derivatives

  • Anastasiya V. Agafonova,
  • Mikhail S. Novikov and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2024, 20, 3191–3197, doi:10.3762/bjoc.20.264

Graphical Abstract
  • azirine dicarboxylic acid 6j, oxazole-4-carboxylic acid 9 was isolated. Apparently, azirine 2j underwent ring opening at higher temperature to nitrile ylide 7, which after cyclization and hydrolysis gave acid 9 (Scheme 3) (cf., e.g. [23]). Next, given that the preparation of 2H-azirine-2-carboxamides from
  • because the isomerization of 3-(tert-butyl)-5-chloroisoxazole-4-carbonyl chloride did not occur at room temperature, but at elevated temperature (82 °C) the reaction proceeded via the formation of the nitrile ylide, which cyclized to 2-(tert-butyl)-5-chlorooxazole-4-carbonyl chloride. 3-Phenyl-2H-azirine
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • atom from substrate 53 to form the C-centered radical B. Copper(II) then oxidizes TBHP to form the tert-butylperoxy radical C and copper(I), closing the catalytic copper cycle. tert-Butylperoxy radical C recombines with radical B to yield the product 54. The reaction of a mono-substituted nitrile
PDF
Album
Review
Published 18 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • oxidized, either directly at the anode or by the TAC dication radical. The resulting intermediate undergoes the classic Ritter steps, reacting with acetonitrile to form a nitrile, which is subsequently hydrolyzed to yield the target amide product (Scheme 49). The construction of multiple C–O bonds from C–H
PDF
Album
Review
Published 09 Oct 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • it with our known iodonium species in the activation of Au(I)–Cl bonds. Results and Discussion As immediate precursor to the target structure 7Z, the literature-known isoxazole 10 was synthesized via a Cu(I)-catalyzed cycloaddition between (2-iodophenyl)acetylene (8) and benzyl nitrile oxide, which
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Synthesis, electrochemical properties, and antioxidant activity of sterically hindered catechols with 1,3,4-oxadiazole, 1,2,4-triazole, thiazole or pyridine fragments

  • Daria A. Burmistrova,
  • Andrey Galustyan,
  • Nadezhda P. Pomortseva,
  • Kristina D. Pashaeva,
  • Maxim V. Arsenyev,
  • Oleg P. Demidov,
  • Mikhail A. Kiskin,
  • Andrey I. Poddel’sky,
  • Nadezhda T. Berberova and
  • Ivan V. Smolyaninov

Beilstein J. Org. Chem. 2024, 20, 2378–2391, doi:10.3762/bjoc.20.202

Graphical Abstract
  • nitrogen atom N3 of the nitrile group of the solvent acetonitrile molecule presenting in the cell: the corresponding distance H2B···N3 is 2.03(1) Å, the angle O2B–H2B–N3 is 169°. As a result, molecules A and B in this pair are located according to the principle of "chairs inserted into each other." The
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • production or external purchase and have progressed along the value chain to the clinic and full approval [5]. Literature inspection reveals that an established common method to prepare deuterated benzylic isonitriles is reduction of a nitrile in the presence of a deuterium source (Scheme 1) [16][17][18
  • method to prepare [D1]-formamides (D–C=O) is through a Leuckart–Wallach reaction with an amine and [D1]-methyl/ethyl formate or [D1]-dimethylformamide [19][20]. Stockmann and co-workers produced [D2]-formamides (N–D, D–C=O) via acid-catalyzed nitrile hydrolysis with HCl and D2O [21]. Thus, using the
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • -pot two-step protocol. Several aryl-SCF3 compounds are reported by variation of the nitrile or of the trifluoroalkyl sulfoxide starting material. The variation of the perfluoroalkyl chain was also possible. Keywords: ortho functionalization; rearrangement; sulfoxide; Introduction Since decades
  • under these conditions (Table 1, entry 4). The importance of the temperature was then evaluated (Table 1, entries 5–7). A too low value was deleterious to the yield, whereas −5 °C appeared as the conditions of choice. Finally, by adjusting to 5 equivalents of nitrile and base, resulted in the optimal
  • -position of the nitrile is also detrimental to the reaction, resulting in less than 30% yield of the desired product 3d. Nevertheless, the reaction is compatible with halogens elsewhere in longer nitrile alkyl chains (3e,g). Finally, it was possible to obtain the terminal alkene 3f with a yield of 58
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • )-cycloaddition of nitrile oxides 137, generated in situ from hydroxyiminoyl chloride 135 and terminal alkynes, was proposed by Kovacs and Novak. Copper supported on iron serves as a catalyst and as a reagent for the reductive ring opening and leads to β-aminoenones 139, which react in the consecutive one-pot
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • agrochemical industries. The (3 + 2)-cycloaddition between nitrile imines and alkenes represents one of the most efficient strategies to prepare these azacycles. However, conventional methods for the generation of the nitrile imine involved the use of unstable hydrazonoyl halides or the oxidation of aldehyde
  • the electrogeneration of iodine in the aqueous phase. Under high stirring, the latter would react with NH-arylhydrazones 72 in the organic phase to furnish the N-iodo hydrazonium 75 and ultimately the nitrile imine 76 under basic conditions provided by the cathodic process. The critical role of the in
  • /fragmentation and extrusion of nitrogen to yield the nitrile derivative 159. The transformation proceeded neither with aldehydes nor with aromatic ketones (Scheme 32) [82]. In 2008, Okimoto et al. reported the electrochemical oxidation of ketone-derived NH-allylhydrazones 160 into the corresponding azines 161
PDF
Album
Review
Published 14 Aug 2024
Other Beilstein-Institut Open Science Activities