Search results

Search for "organic synthesis" in Full Text gives 777 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Copper-catalyzed yne-allylic substitutions: concept and recent developments

  • Shuang Yang and
  • Xinqiang Fang

Beilstein J. Org. Chem. 2024, 20, 2739–2775, doi:10.3762/bjoc.20.232

Graphical Abstract
  • transformed into a series of useful molecules, enabling them an important backbone in organic synthesis. Lin et al. [66] used sodium sulfinates as the nucleophiles to realize the asymmetric sulfonylation of yne-allylic esters. The reaction can be carried out under mild conditions with good to excellent regio
PDF
Album
Review
Published 31 Oct 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • Coimbra, 3004-535 Coimbra, Portugal LAQV-REQUIMTE, Institute for Research and Advanced Training (IIFA), University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal 10.3762/bjoc.20.227 Organic synthesis and catalysis are two of the main stalwarts of the chemical sciences, and they have undergone
  • extraordinary advances over the past 150 years. They are a crucial tool for the development of new molecules across a wide range of fields, including drug discovery, energy, materials science, and many more. The ability to design and create novel compounds through organic synthesis, aided by catalysis, is
  • intramolecular aminocarbonylation using Mo(CO)6. Both catalytic approaches successfully produced the desired DBDAPs. As previously mentioned, organic synthesis is a crucial tool for preparing complex molecules of high value to industry. Frackenpohl et al. [13] designed and synthesized a new library of 2,3
PDF
Album
Editorial
Published 28 Oct 2024

Base-promoted cascade recyclization of allomaltol derivatives containing an amide fragment into substituted 3-(1-hydroxyethylidene)tetronic acids

  • Andrey N. Komogortsev,
  • Constantine V. Milyutin and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 2585–2591, doi:10.3762/bjoc.20.217

Graphical Abstract
  • -hydroxypyran-4-ones these products are widely used in organic synthesis [17][18][19][20][21][22][23]. Among the diverse chemical transformations of allomaltol derivatives the recyclizations of the pyranone ring are of great interest. As a rule, such reactions are realized under action of nitrogen-containing
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2024

Transition-metal-free synthesis of arylboronates via thermal generation of aryl radicals from triarylbismuthines in air

  • Yuki Yamamoto,
  • Yuki Konakazawa,
  • Kohsuke Fujiwara and
  • Akiya Ogawa

Beilstein J. Org. Chem. 2024, 20, 2577–2584, doi:10.3762/bjoc.20.216

Graphical Abstract
  • are one of the fundamental aryl compounds in organic synthesis, especially in cross-coupling reactions [1][2][3][4][5][6][7][8][9], and their applications are widespread, including dye synthesis, pharmaceutical and agrochemical synthesis, and industrial manufacturing [10][11]. In recent years, a
  • diborons can capture the in situ-generated carbon-centered radicals [28][29][30][31][32][33][34][35][36]. Among the aryl sources in organic synthesis, triarylbismuthines are shelf-stable and easy-to-handle reagents with appropriate reactivities in transition-metal-catalyzed reactions and radical reactions
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • the active Ru(II) species, completing the catalytic cycle (Scheme 38). This approach underlines the potential of ruthenium catalysis in achieving site-selective functionalization of complex molecules, thereby expanding the toolkit available for organic synthesis and drug development. 1.3.5 Rh-assisted
  • applications of electrochemical methods in organic synthesis. In this context the Meggers group developed an asymmetric Rh catalyst-promoted alkylation [56]. The Rh complex was used as a chiral catalyst and Cp2Fe as an anodic oxidation catalyst to achieve the enantioselective C(sp3)–H alkenylation of 2
  • arenes via palladium-catalyzed electrooxidation, further showcasing the versatility and potential of this approach in organic synthesis (Scheme 42b) [58]. These methodologies underline the expanding role of palladium catalysis in electrochemical transformations, offering robust strategies for the
PDF
Album
Review
Published 09 Oct 2024

Visible-light-mediated flow protocol for Achmatowicz rearrangement

  • Joachyutharayalu Oja,
  • Sanjeev Kumar and
  • Srihari Pabbaraja

Beilstein J. Org. Chem. 2024, 20, 2493–2499, doi:10.3762/bjoc.20.213

Graphical Abstract
  • Joachyutharayalu Oja Sanjeev Kumar Srihari Pabbaraja Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India 10.3762/bjoc.20.213 Abstract The batch
PDF
Album
Supp Info
Letter
Published 08 Oct 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • process and the rich toolkit of advanced organic synthesis [5]. Homoallylic amines occupy a significant niche in alkaloid synthesis as they frequently appear as key intermediates in syntheses of the various nitrogen-containing natural products [6][7][8][9][10][11][12][13][14]. Additionally, they can be
PDF
Album
Review
Published 16 Sep 2024

gem-Difluorination of carbon–carbon triple bonds using Brønsted acid/Bu4NBF4 or electrogenerated acid

  • Mizuki Yamaguchi,
  • Hiroki Shimao,
  • Kengo Hamasaki,
  • Keiji Nishiwaki,
  • Shigenori Kashimura and
  • Kouichi Matsumoto

Beilstein J. Org. Chem. 2024, 20, 2261–2269, doi:10.3762/bjoc.20.194

Graphical Abstract
  • solution of Bu4NBF4/CH2Cl2 containing substrates might also promote the same reactions (Figure 1, reaction 6, electrochemical method). Currently, electrochemistry can be regarded as a promising technique in organic synthesis, because heavy-metal reagents can be avoided for the oxidation or reduction of
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Cell-free protein synthesis with technical additives – expanding the parameter space of in vitro gene expression

  • Tabea Bartsch,
  • Stephan Lütz and
  • Katrin Rosenthal

Beilstein J. Org. Chem. 2024, 20, 2242–2253, doi:10.3762/bjoc.20.192

Graphical Abstract
  • established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents

  • Naoki Takeda,
  • Shuichi Akasaka,
  • Susumu Kawauchi and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2024, 20, 2234–2241, doi:10.3762/bjoc.20.191

Graphical Abstract
  • Amano Institute of Technology, and the Nakatani Foundation. Acknowledgement We thank S. Fukushima (Tokyo Institute of Technology) for assisting with organic synthesis.
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Selective hydrolysis of α-oxo ketene N,S-acetals in water: switchable aqueous synthesis of β-keto thioesters and β-keto amides

  • Haifeng Yu,
  • Wanting Zhang,
  • Xuejing Cui,
  • Zida Liu,
  • Xifu Zhang and
  • Xiaobo Zhao

Beilstein J. Org. Chem. 2024, 20, 2225–2233, doi:10.3762/bjoc.20.190

Graphical Abstract
  • N,S-acetals; β-keto amide; β-keto thioester; dodecylbenzenesulfonic acid; hydrolysis; Introduction In the past decades, the application of easily available and stable α-oxo ketene N,S-acetals as significant synthons has received more and more attention in organic synthesis due to their unique
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2024

Electrochemical allylations in a deep eutectic solvent

  • Sophia Taylor and
  • Scott T. Handy

Beilstein J. Org. Chem. 2024, 20, 2217–2224, doi:10.3762/bjoc.20.189

Graphical Abstract
  • used, offering an interesting new option for electrochemical allylations. Keywords: allylation; electrosynthesis; eutectic solvent; recycling; tin; Introduction The last several years have witnessed a tremendous resurgence of interest in electrochemistry in the area of organic synthesis [1]. While
PDF
Album
Full Research Paper
Published 02 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified
PDF
Album
Perspective
Published 26 Aug 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • , sigmatropic rearrangements have established themselves as robust and versatile tools for many transformations in organic synthesis [1][2][3]. They were widely employed with a wide range of substrates. With a peculiar type of scaffold, S-perfluoroalkyl aryl sulfoxides, in 2009, we were the first to demonstrate
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Cage-like microstructures via sequential Ugi reactions in aqueous emulsions

  • Rita S. Alqubelat,
  • Yaroslava A. Menzorova and
  • Maxim A. Mironov

Beilstein J. Org. Chem. 2024, 20, 2078–2083, doi:10.3762/bjoc.20.179

Graphical Abstract
  • Rita S. Alqubelat Yaroslava A. Menzorova Maxim A. Mironov Department of Technology for Organic Synthesis, Ural Federal University, Mira St. 19, Ekaterinburg, 620002, Russian Federation 10.3762/bjoc.20.179 Abstract Cage-like microstructures were obtained in two steps by sequential Ugi reactions
PDF
Album
Supp Info
Letter
Published 22 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • organic synthesis. For instance, hydrazinecarbothioamide (40) can be used to synthesize bisheterocycles. Mohamed et al. were able to combine Hantzsch thiazole and Knorr pyrazole synthesis with this building block. Thiazolyl-pyrazolyl-chromenes 43 were synthesized in good yields from substituted 3
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • Aurelie Claraz Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France 10.3762/bjoc.20.175 Abstract Hydrazones are important structural motifs in organic synthesis, providing a useful molecular platform for the
  • versatile reagents in organic synthesis. They have for instance been frequently employed for the construction of azacycles through various cyclization protocols or cycloaddition reactions [6][7][8][9][10]. Early work in this field includes the well-known Fischer indole synthesis [11]. Additionally, they
  • drive oxidative and reductive processes precludes the reliance on toxic or dangerous redox reagents [32]. The explosive renewal of interest in this technology and the resulting recent achievements have brought it at the forefront of organic synthesis. Electrooxidative transformations of hydrazones offer
PDF
Album
Review
Published 14 Aug 2024

Novel oxidative routes to N-arylpyridoindazolium salts

  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2024, 20, 1906–1913, doi:10.3762/bjoc.20.166

Graphical Abstract
  • organic synthesis. In the present paper, convenient, easily reproducible, straightforward synthetic routes to N-arylpyridoindazolium salts were elaborated, based on both electrochemical and chemical (using bis(trifluoroacetoxy)iodobenzene, PIFA) oxidation of the ortho-pyridine-substituted diarylamines
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Access to 2-oxoazetidine-3-carboxylic acid derivatives via thermal microwave-assisted Wolff rearrangement of 3-diazotetramic acids in the presence of nucleophiles

  • Ivan Lyutin,
  • Vasilisa Krivovicheva,
  • Grigory Kantin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2024, 20, 1894–1899, doi:10.3762/bjoc.20.164

Graphical Abstract
  • organic synthesis as a route to generate ketenes is being actively investigated, involving both acyclic and carbocyclic diazocarbonyl compounds [26]. At the same time, the use of diazoheterocyclic reagents (including diazotetramic acids) in this transformation, with the formation of heterocyclic ring
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • precursors which can be involved in further modifications. In addition, the GBB-like reactions can also be used to deliver other heterocyclic motifs. 3.1 One-pot synthesis As an efficient approach in organic synthesis, one-pot synthesis has been exploited in the post-modification of GBB products. This
PDF
Album
Review
Published 01 Aug 2024

New triazinephosphonate dopants for Nafion proton exchange membranes (PEM)

  • Fátima C. Teixeira,
  • António P. S. Teixeira and
  • C. M. Rangel

Beilstein J. Org. Chem. 2024, 20, 1623–1634, doi:10.3762/bjoc.20.145

Graphical Abstract
  • -triazine isomers [30]. There have been reported several and diverse applications to a large number of compounds with a triazine moiety, ranging from biological applications [31][32][33][34], such as fungicide, herbicide, antiviral, antimicrobial, antitumor, to their use in organic synthesis, including
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2024

Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor

  • Koichi Mitsudo,
  • Atsushi Osaki,
  • Haruka Inoue,
  • Eisuke Sato,
  • Naoki Shida,
  • Mahito Atobe and
  • Seiji Suga

Beilstein J. Org. Chem. 2024, 20, 1560–1571, doi:10.3762/bjoc.20.139

Graphical Abstract
  • ; quinoline; Introduction Nitrogen-containing molecules are important bioactive compounds and intermediates in chemical synthesis. Therefore, the chemical transformations of nitrogen-containing compounds have been widely studied in the field of organic synthesis [1][2][3][4]. For instance, the reduction of
  • compounds with the PEM-type reactor. The chemoselective reduction of nitrogen-containing compounds under mild conditions is important for organic synthesis, and we believe that the PEM reaction system is a powerful tool that can be applied to a wide variety of nitrogen-containing compounds. Schematic of (a
  • ® electrode, respectively. Funding This work was supported in part by JST CREST Grant No. JP65R1204400, Japan, JSPS KAKENHI Grant Numbers JP22H02122 (to K.M.), JP23K17917 (to K.M.), JP22K05115 (to S.S.), and JP21H05214 (Digitalization-driven Transformative Organic Synthesis) (to S.S.),
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • pervasive in organic synthesis and can also be used to efficiently fluorinate benzylic C(sp3)–H bonds. The general blueprint for this transformation follows a metal insertion into the C(sp3)–H bond followed by C–F reductive elimination [11][22][38]. In 2006, Sanford and co-workers published a seminal and
PDF
Album
Review
Published 10 Jul 2024

Towards an asymmetric β-selective addition of azlactones to allenoates

  • Behzad Nasiri,
  • Ghaffar Pasdar,
  • Paul Zebrowski,
  • Katharina Röser,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1504–1509, doi:10.3762/bjoc.20.134

Graphical Abstract
  • ; quaternary ammonium salt catalysis; Introduction The development of asymmetric synthesis routes to access non-natural amino acids has for decades been one of the most heavily investigated tasks in organic synthesis and catalysis-oriented research [1][2][3][4][5][6][7][8][9][10][11][12][13]. As a consequence
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • intermediates in organic synthesis for the construction of all-carbon-substituted quaternary centers (Figure 1A). However, conventional methods for the synthesis of tertiary alkylnitriles such as direct functionalization of alkylnitriles [10] and hydrocyanation of alkenes [11][12][13][14] are typically hindered
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024
Other Beilstein-Institut Open Science Activities