Search results

Search for "organic synthesis" in Full Text gives 769 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Cell-free protein synthesis with technical additives – expanding the parameter space of in vitro gene expression

  • Tabea Bartsch,
  • Stephan Lütz and
  • Katrin Rosenthal

Beilstein J. Org. Chem. 2024, 20, 2242–2253, doi:10.3762/bjoc.20.192

Graphical Abstract
  • established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents

  • Naoki Takeda,
  • Shuichi Akasaka,
  • Susumu Kawauchi and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2024, 20, 2234–2241, doi:10.3762/bjoc.20.191

Graphical Abstract
  • Amano Institute of Technology, and the Nakatani Foundation. Acknowledgement We thank S. Fukushima (Tokyo Institute of Technology) for assisting with organic synthesis.
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Selective hydrolysis of α-oxo ketene N,S-acetals in water: switchable aqueous synthesis of β-keto thioesters and β-keto amides

  • Haifeng Yu,
  • Wanting Zhang,
  • Xuejing Cui,
  • Zida Liu,
  • Xifu Zhang and
  • Xiaobo Zhao

Beilstein J. Org. Chem. 2024, 20, 2225–2233, doi:10.3762/bjoc.20.190

Graphical Abstract
  • N,S-acetals; β-keto amide; β-keto thioester; dodecylbenzenesulfonic acid; hydrolysis; Introduction In the past decades, the application of easily available and stable α-oxo ketene N,S-acetals as significant synthons has received more and more attention in organic synthesis due to their unique
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2024

Electrochemical allylations in a deep eutectic solvent

  • Sophia Taylor and
  • Scott T. Handy

Beilstein J. Org. Chem. 2024, 20, 2217–2224, doi:10.3762/bjoc.20.189

Graphical Abstract
  • used, offering an interesting new option for electrochemical allylations. Keywords: allylation; electrosynthesis; eutectic solvent; recycling; tin; Introduction The last several years have witnessed a tremendous resurgence of interest in electrochemistry in the area of organic synthesis [1]. While
PDF
Album
Full Research Paper
Published 02 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified
PDF
Album
Perspective
Published 26 Aug 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • , sigmatropic rearrangements have established themselves as robust and versatile tools for many transformations in organic synthesis [1][2][3]. They were widely employed with a wide range of substrates. With a peculiar type of scaffold, S-perfluoroalkyl aryl sulfoxides, in 2009, we were the first to demonstrate
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Cage-like microstructures via sequential Ugi reactions in aqueous emulsions

  • Rita S. Alqubelat,
  • Yaroslava A. Menzorova and
  • Maxim A. Mironov

Beilstein J. Org. Chem. 2024, 20, 2078–2083, doi:10.3762/bjoc.20.179

Graphical Abstract
  • Rita S. Alqubelat Yaroslava A. Menzorova Maxim A. Mironov Department of Technology for Organic Synthesis, Ural Federal University, Mira St. 19, Ekaterinburg, 620002, Russian Federation 10.3762/bjoc.20.179 Abstract Cage-like microstructures were obtained in two steps by sequential Ugi reactions
PDF
Album
Supp Info
Letter
Published 22 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • organic synthesis. For instance, hydrazinecarbothioamide (40) can be used to synthesize bisheterocycles. Mohamed et al. were able to combine Hantzsch thiazole and Knorr pyrazole synthesis with this building block. Thiazolyl-pyrazolyl-chromenes 43 were synthesized in good yields from substituted 3
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • Aurelie Claraz Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France 10.3762/bjoc.20.175 Abstract Hydrazones are important structural motifs in organic synthesis, providing a useful molecular platform for the
  • versatile reagents in organic synthesis. They have for instance been frequently employed for the construction of azacycles through various cyclization protocols or cycloaddition reactions [6][7][8][9][10]. Early work in this field includes the well-known Fischer indole synthesis [11]. Additionally, they
  • drive oxidative and reductive processes precludes the reliance on toxic or dangerous redox reagents [32]. The explosive renewal of interest in this technology and the resulting recent achievements have brought it at the forefront of organic synthesis. Electrooxidative transformations of hydrazones offer
PDF
Album
Review
Published 14 Aug 2024

Novel oxidative routes to N-arylpyridoindazolium salts

  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2024, 20, 1906–1913, doi:10.3762/bjoc.20.166

Graphical Abstract
  • organic synthesis. In the present paper, convenient, easily reproducible, straightforward synthetic routes to N-arylpyridoindazolium salts were elaborated, based on both electrochemical and chemical (using bis(trifluoroacetoxy)iodobenzene, PIFA) oxidation of the ortho-pyridine-substituted diarylamines
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Access to 2-oxoazetidine-3-carboxylic acid derivatives via thermal microwave-assisted Wolff rearrangement of 3-diazotetramic acids in the presence of nucleophiles

  • Ivan Lyutin,
  • Vasilisa Krivovicheva,
  • Grigory Kantin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2024, 20, 1894–1899, doi:10.3762/bjoc.20.164

Graphical Abstract
  • organic synthesis as a route to generate ketenes is being actively investigated, involving both acyclic and carbocyclic diazocarbonyl compounds [26]. At the same time, the use of diazoheterocyclic reagents (including diazotetramic acids) in this transformation, with the formation of heterocyclic ring
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • precursors which can be involved in further modifications. In addition, the GBB-like reactions can also be used to deliver other heterocyclic motifs. 3.1 One-pot synthesis As an efficient approach in organic synthesis, one-pot synthesis has been exploited in the post-modification of GBB products. This
PDF
Album
Review
Published 01 Aug 2024

New triazinephosphonate dopants for Nafion proton exchange membranes (PEM)

  • Fátima C. Teixeira,
  • António P. S. Teixeira and
  • C. M. Rangel

Beilstein J. Org. Chem. 2024, 20, 1623–1634, doi:10.3762/bjoc.20.145

Graphical Abstract
  • -triazine isomers [30]. There have been reported several and diverse applications to a large number of compounds with a triazine moiety, ranging from biological applications [31][32][33][34], such as fungicide, herbicide, antiviral, antimicrobial, antitumor, to their use in organic synthesis, including
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2024

Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor

  • Koichi Mitsudo,
  • Atsushi Osaki,
  • Haruka Inoue,
  • Eisuke Sato,
  • Naoki Shida,
  • Mahito Atobe and
  • Seiji Suga

Beilstein J. Org. Chem. 2024, 20, 1560–1571, doi:10.3762/bjoc.20.139

Graphical Abstract
  • ; quinoline; Introduction Nitrogen-containing molecules are important bioactive compounds and intermediates in chemical synthesis. Therefore, the chemical transformations of nitrogen-containing compounds have been widely studied in the field of organic synthesis [1][2][3][4]. For instance, the reduction of
  • compounds with the PEM-type reactor. The chemoselective reduction of nitrogen-containing compounds under mild conditions is important for organic synthesis, and we believe that the PEM reaction system is a powerful tool that can be applied to a wide variety of nitrogen-containing compounds. Schematic of (a
  • ® electrode, respectively. Funding This work was supported in part by JST CREST Grant No. JP65R1204400, Japan, JSPS KAKENHI Grant Numbers JP22H02122 (to K.M.), JP23K17917 (to K.M.), JP22K05115 (to S.S.), and JP21H05214 (Digitalization-driven Transformative Organic Synthesis) (to S.S.),
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • pervasive in organic synthesis and can also be used to efficiently fluorinate benzylic C(sp3)–H bonds. The general blueprint for this transformation follows a metal insertion into the C(sp3)–H bond followed by C–F reductive elimination [11][22][38]. In 2006, Sanford and co-workers published a seminal and
PDF
Album
Review
Published 10 Jul 2024

Towards an asymmetric β-selective addition of azlactones to allenoates

  • Behzad Nasiri,
  • Ghaffar Pasdar,
  • Paul Zebrowski,
  • Katharina Röser,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1504–1509, doi:10.3762/bjoc.20.134

Graphical Abstract
  • ; quaternary ammonium salt catalysis; Introduction The development of asymmetric synthesis routes to access non-natural amino acids has for decades been one of the most heavily investigated tasks in organic synthesis and catalysis-oriented research [1][2][3][4][5][6][7][8][9][10][11][12][13]. As a consequence
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2024

Electrophotochemical metal-catalyzed synthesis of alkylnitriles from simple aliphatic carboxylic acids

  • Yukang Wang,
  • Yan Yao and
  • Niankai Fu

Beilstein J. Org. Chem. 2024, 20, 1497–1503, doi:10.3762/bjoc.20.133

Graphical Abstract
  • intermediates in organic synthesis for the construction of all-carbon-substituted quaternary centers (Figure 1A). However, conventional methods for the synthesis of tertiary alkylnitriles such as direct functionalization of alkylnitriles [10] and hydrocyanation of alkenes [11][12][13][14] are typically hindered
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Predicting bond dissociation energies of cyclic hypervalent halogen reagents using DFT calculations and graph attention network model

  • Yingbo Shao,
  • Zhiyuan Ren,
  • Zhihui Han,
  • Li Chen,
  • Yao Li and
  • Xiao-Song Xue

Beilstein J. Org. Chem. 2024, 20, 1444–1452, doi:10.3762/bjoc.20.127

Graphical Abstract
  • ; machine learning; Introduction Hypervalent iodine reagents are increasingly gaining attention in the fields of organic synthesis and catalysis due to their environmental benefits, accessibility, and cost-efficiency [1][2][3][4][5][6][7][8][9][10][11]. Over the last three decades, a series of cyclic
PDF
Album
Supp Info
Letter
Published 28 Jun 2024

Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation

  • Akanksha Chhikara,
  • Fan Wu,
  • Navdeep Kaur,
  • Prabagar Baskaran,
  • Alex M. Nguyen,
  • Zhichang Yin,
  • Anthony H. Pham and
  • Wei Li

Beilstein J. Org. Chem. 2024, 20, 1405–1411, doi:10.3762/bjoc.20.122

Graphical Abstract
  • ; lithium salt activation; olefin oxyamination; oxazoline; Introduction Hypervalent iodine(III) reagents, also known as λ3–iodanes, have been well established and used in organic synthesis for the past decades [1][2][3][4][5]. The pioneering works of Fuchigami and Fugita, Ochiai, Kita, and later the
  • of handling, and versatile reactivity, etc. render these catalysts highly attractive for adoption in organic synthesis. In particular, the field of olefin difunctionalization, known for its rapid assembly of molecular complexity, has been a fertile ground for innovation for hypervalent iodine
PDF
Album
Supp Info
Letter
Published 24 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • , solvents, and technologies for the Cannizzaro reaction reflects the broader trend in organic synthesis towards more sustainable and efficient practices. The focus of this review is to highlight some recent advances in synthetic strategies and applications of the Cannizzaro reaction towards the synthesis of
  • Cannizzaro reaction as an important synthetic tool in organic synthesis. Certain developments in the Cannizzaro reaction with regard to reagents, solvents, and technologies are worth mentioning. Generally, the classical version of the Cannizzaro reaction is conducted at elevated temperatures using
  • future [71][72]. Herein, we discuss recent advances in the Cannizzaro reaction, focusing on the synthetic developments of natural products and important building blocks in the last two decades. Applications of the Cannizzaro reaction in organic synthesis The Cannizzaro reaction has been significantly
PDF
Album
Review
Published 19 Jun 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • ][40][41][42]. However, these protocols have a limited scope and suffer from prefunctionalization and waste generation. Photons are considered the greenest reagent in organic synthesis. Thus, photomediated alkyl radical generation from easily accessible alcohols for organic synthesis is highly
  • β-scission, NHC 72 was found to be most effective. Unstrained secondary alcohols were efficiently activated with the help of NHC 65. Deoxygenation of sterically congested alcohols, which has been a longstanding challenge in organic synthesis, was achieved by using a more electrophilic alcohol
  • heightened by the current energy crisis and the adverse impacts of industrialization. The development of green and energy-efficient methods in organic chemistry that use renewable sources of starting materials is considered highly sustainable [1][2][3]. Radical reactions have profound applications in organic
PDF
Album
Review
Published 14 Jun 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • chemical reagents; however, these methods have some drawbacks, such as reagent toxicity/stability and limited substrate scope [12][13][14]. While recent advances in photochemistry have remarkably expanded the synthetic utility of (hetero)aryl radicals in organic synthesis [15][16][17][18][19][20], visible
PDF
Album
Supp Info
Letter
Published 10 Jun 2024
Graphical Abstract
  • ][34][35][36][37][38]. In addition to their unique properties, vegetable oils are known to be useful as green solvents in many applications [39][40][41][42]. The evaluation of vegetable oils as alternative solvents in organic synthesis is very limited [43][44][45][46][47]. Synthetic chemists are still
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2024

Oxidative hydrolysis of aliphatic bromoalkenes: scope study and reactivity insights

  • Amol P. Jadhav and
  • Claude Y. Legault

Beilstein J. Org. Chem. 2024, 20, 1286–1291, doi:10.3762/bjoc.20.111

Graphical Abstract
  • alternative reaction pathway. Keywords: bromoalkenes; bromoketones; hypervalent iodine; oxidative hydrolysis; Ritter-type; Introduction Organic synthesis heavily relies on oxidative transformations to facilitate chemical reactions. One popular method for achieving these transformations is using redox-active
PDF
Album
Supp Info
Letter
Published 03 Jun 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • importance in organic synthesis and is widely used in the pharmaceutical and other chemical industries. Palladium-catalyzed cross-coupling reactions are one of the compelling methods for building C–C and C–N bonds [1][2]. However, using organohalide reagents and harsh reaction conditions in this process
PDF
Album
Review
Published 21 May 2024
Other Beilstein-Institut Open Science Activities