Search results

Search for "aromatic substitution" in Full Text gives 144 result(s) in Beilstein Journal of Organic Chemistry.

On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals

  • Daniel Straub,
  • Markus Gross,
  • Mona E. Arnold,
  • Julia Zolg and
  • Alexander J. C. Kuehne

Beilstein J. Org. Chem. 2025, 21, 964–998, doi:10.3762/bjoc.21.80

Graphical Abstract
  • functionalization with a much broader variety of donors (and even acceptors) than is possible through a radical-mediated nucleophilic aromatic substitution (SRN1, see also below) [3][46][47]. The I-TTM has a maximum emission at λem = 578 nm and a ϕ of 3% (in cyclohexane), indicating that the symmetry does not seem
  • precise C–C and C–N cross-coupling reactions only at the site of the iodine – donors were attached to TTM by radical-mediated nucleophilic aromatic substitution SRN1. The leaving group is the para-chlorine atom, of which a TTM molecule has three. It is therefore less than surprising that during this SRN1
PDF
Album
Supp Info
Review
Published 21 May 2025

Recent advances in the electrochemical synthesis of organophosphorus compounds

  • Babak Kaboudin,
  • Milad Behroozi,
  • Sepideh Sadighi and
  • Fatemeh Asgharzadeh

Beilstein J. Org. Chem. 2025, 21, 770–797, doi:10.3762/bjoc.21.61

Graphical Abstract
  • reaction system. The reaction proceeded via an anodic oxidation of bromide to bromine, followed by a reaction with sulfur and dialkylphosphite to give the corresponding dialkylphsophothioate. The reaction proceeded via an electrophilic aromatic substitution in the next step to provide the final product
PDF
Album
Review
Published 16 Apr 2025

Synthesis of HBC fluorophores with an electrophilic handle for covalent attachment to Pepper RNA

  • Raphael Bereiter and
  • Ronald Micura

Beilstein J. Org. Chem. 2025, 21, 727–735, doi:10.3762/bjoc.21.56

Graphical Abstract
  • nucleophilic aromatic substitution of 4-fluorobenzaldehyde with 2-(methylamino)ethanol, 3-methylamino-1-propanol or 2-[2-(methylamino)ethoxy]ethan-1-ol in the presence of potassium carbonate to afford benzaldehyde derivatives 1, 2, and 3 in excellent yields. Next, the piperidine-induced condensation with 4
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2025

Acyclic cucurbit[n]uril bearing alkyl sulfate ionic groups

  • Christian Akakpo,
  • Peter Y. Zavalij and
  • Lyle Isaacs

Beilstein J. Org. Chem. 2025, 21, 717–726, doi:10.3762/bjoc.21.55

Graphical Abstract
  • to a sulfate group. The synthetic route to C1 starts with the double electrophilic aromatic substitution reaction of methylene-bridged glycoluril tetramer (TetBCE) with W1 in TFA/Ac2O 1:1 which adds the sidewalls and transforms the OH groups into OAc groups to give TetW1OAc in 71% yield as described
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2025

Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction

  • Thomas Brandt,
  • Pascal Lentes,
  • Jeremy Rudtke,
  • Michael Hösgen,
  • Christian Näther and
  • Rainer Herges

Beilstein J. Org. Chem. 2025, 21, 490–499, doi:10.3762/bjoc.21.36

Graphical Abstract
  • diazocines 13 and 21 were also investigated in aqueous solution (13 and 21 in aqueous PBS buffer solution at pH 7.4 250 µM, 21 at pH 3.5 250 µM, 13 at pH 9 250 µM). Benzoic acid derivative 13 was representatively chosen for polar aromatic substitution and the amino derivative 21 for non-aromatic substitution
  • [17]. As a starting point for further derivatization, the synthesis and characterization of monohalogenated N-acetyl diazocines 2 and 3 (Figure 1) have been performed [22]. Unfortunately, diazocines in general, and N-acetyl diazocines in particular cannot be derivatized by electrophilic aromatic
  • substitution. Substituents such as halogen atoms must be introduced into the N-acetyl diazocine structure during the synthesis of the building blocks. In the present work we start from mono- and dihalogenated N-acetyl diazocine 2–4 (Figure 2) and focus on the further derivatization via cross-coupling reactions
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2025

Identification and removal of a cryptic impurity in pomalidomide-PEG based PROTAC

  • Bingnan Wang,
  • Yong Lu and
  • Chuo Chen

Beilstein J. Org. Chem. 2025, 21, 407–411, doi:10.3762/bjoc.21.28

Graphical Abstract
  • drug”) class of PROTAC molecules with a PEG linker is frequently used to promote targeted protein degradation. The standard protocol for their synthesis involves nucleophilic aromatic substitution of 4-fluorothalidomide with a PEG-amine. We report herein the identification of a commonly ignored
  • impurity generated in this process. Nucleophilic acyl substitution competes with aromatic substitution to displace glutarimide and gives a byproduct that can co-elute with the desired product on HPLC throughout the remainder of the synthesis. Scavenging with taurine is a convenient way to minimize this
  • synthesis of iVeliparib-AP6 [5] starts with a nucleophilic aromatic substitution (SNAr) reaction wherein 4-fluorothalidomide (1) reacts with amino-PEG7-OH 2 to give alcohol 3 (Scheme 1). Subsequent alcohol oxidation followed by reductive amination of the resulting aldehyde 4 with veliparib [6][7] provides
PDF
Album
Supp Info
Letter
Published 18 Feb 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
  • , photoredox-catalytic, and nucleophilic aromatic substitution reactions, as well as in the two-step synthesis of cyclobutanone. The molecules synthesized under the optimal conditions are presented in Figure 6b, employing the stable noisy optimization by branch and fit (SNOBFIT) algorithm. SNOBFIT offers a
PDF
Album
Review
Published 06 Jan 2025

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • intramolecular. In the presence of a base, the triflate anion is extracted, forming a cationic trifluoromethanesulfonyl group as an intermediate. Thus, the products are believed to form via a sulfonyl-directed nucleophilic aromatic substitution pathway. Finally, the products are obtained through the dissociation
PDF
Album
Review
Published 13 Nov 2024

Synthesis of spiroindolenines through a one-pot multistep process mediated by visible light

  • Francesco Gambuti,
  • Jacopo Pizzorno,
  • Chiara Lambruschini,
  • Renata Riva and
  • Lisa Moni

Beilstein J. Org. Chem. 2024, 20, 2722–2731, doi:10.3762/bjoc.20.230

Graphical Abstract
  • aromatic substitution giving the final spiro-indolenine. The scope of the process has been investigated with respect to all three components. Simple operations, mild conditions, and good yields make this strategy a convenient and sustainable way to obtain novel spiro-indolenine derivatives. Keywords
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2024

Synthesis of benzo[f]quinazoline-1,3(2H,4H)-diones

  • Ruben Manuel Figueira de Abreu,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 2708–2719, doi:10.3762/bjoc.20.228

Graphical Abstract
  • likely by nucleophilic aromatic substitution during aqueous workup. Interestingly, electron-donor groups, such as N,N-dimethylamino, proved to be beneficial in terms of yield when they are located at the alkyne-linked aryl group (Scheme 4a). In contrast, the N,N-dimethylanilino group is disadvantageous
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • preparation of biologically active compounds [15]. The synthesis was achieved via a sulfonyl group rearrangement driven by the azide–tetrazole equilibrium in quinazolines. The researchers utilized two synthetic pathways to prepare the target compounds. The first pathway involved a nucleophilic aromatic
  • substitution (SNAr) reaction between 2-chloro-6,7-dimethoxy-4-sulfonylquinazoline derivatives and NaN3, while the second involved an SNAr reaction between 2,4-dichloro-6,7-dimethoxyquinazoline and alkyl/arylsulfinates, followed by substitution with NaN3. Using this developed methodology, the adrenoblockers
PDF
Album
Editorial
Published 28 Oct 2024

Anion-dependent ion-pairing assemblies of triazatriangulenium cation that interferes with stacking structures

  • Yohei Haketa,
  • Takuma Matsuda and
  • Hiromitsu Maeda

Beilstein J. Org. Chem. 2024, 20, 2567–2576, doi:10.3762/bjoc.20.215

Graphical Abstract
  • +) cations, used as visible light fluorescent dyes, have been synthesized via a nucleophilic aromatic substitution (SNAr) reaction with primary alkylamines (e.g., 1a+; Figure 1) [15][16]. The highly planar geometry of the TATA+ core unit induces π–π stacking structures in single-crystal and film states, as
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2024

A new platform for the synthesis of diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions

  • Vitor A. S. Almodovar and
  • Augusto C. Tomé

Beilstein J. Org. Chem. 2024, 20, 1933–1939, doi:10.3762/bjoc.20.169

Graphical Abstract
  • synthesis of highly fluorescent DPP derivatives through straightforward nucleophilic aromatic substitution reactions with thiols and phenols. These nucleophilic substitutions occur at room temperature and manifest a remarkable selectivity for the 4-position of the pentafluorophenyl groups. Both symmetrical
  • aromatic substitution; phenol; thiol; Introduction Diketopyrrolopyrroles (DPPs) are a class of organic pigments discovered by serendipity in the 1970s [1][2]. Generally, N-unsubstituted DPP derivatives exhibit high melting points, low solubility in most solvents, and strong absorption in the visible
  • pentafluorobenzyl bromide, followed by a nucleophilic aromatic substitution (SNAr) with thiols and phenols. This approach is based on the well-established reactivity of perfluoroaromatic compounds in nucleophilic aromatic substitutions [32][33][34][35]. By varying the reaction conditions and the number of
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

pKalculator: A pKa predictor for C–H bonds

  • Rasmus M. Borup,
  • Nicolai Ree and
  • Jan H. Jensen

Beilstein J. Org. Chem. 2024, 20, 1614–1622, doi:10.3762/bjoc.20.144

Graphical Abstract
  • combination with an ML model to predict a variety of properties. These properties encompass the site of metabolism [31][33], the strengths of hydrogen bond donors and acceptors [34][35][36], and the regioselectivity of electrophilic aromatic substitution reactions [14]. Building on the methodology from
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • reduction. This electrophilic aromatic substitution usually needs harsh reaction conditions, tedious synthetic procedures and sometimes encounters the trouble of separating positional isomers caused by orientation or steric effects of the pre-existed amino group on the aryl moiety. Nevertheless, anilines
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • ethylene glycol units of different chain lengths ranging from 2–5 (25, 26, and 27), by varying the aromatic substitution in the ortho, meta and para-positions and finally obtained the desymmetrized products 28, 29, and 30 in good to excellent yields (Scheme 15). This has been effectively depicted in the
PDF
Album
Review
Published 19 Jun 2024

Structure–property relationships in dicyanopyrazinoquinoxalines and their hydrogen-bonding-capable dihydropyrazinoquinoxalinedione derivatives

  • Tural N. Akhmedov,
  • Ajeet Kumar,
  • Daken J. Starkenburg,
  • Kyle J. Chesney,
  • Khalil A. Abboud,
  • Novruz G. Akhmedov,
  • Jiangeng Xue and
  • Ronald K. Castellano

Beilstein J. Org. Chem. 2024, 20, 1037–1052, doi:10.3762/bjoc.20.92

Graphical Abstract
  • could be efficiently transformed to tautomerically active, H-bonding capable 1,4-dihydropyrazino[2,3-b]quinoxaline-2,3-diones (Figure 1b, DPQDs) via nucleophilic aromatic substitution (SNAr) at the ipso-CN positions. Here, the lactim–lactam tautomerization of DPQDs to arrive at the more stable 2,3-dione
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • the displacement of the chloro substituent with the allyl group, affording 21 in good yield. Electrophilic aromatic substitution reactions at the chloroalkyl ether site were possible when promoted by aluminium chloride, with anisole and diphenyl ether giving addition products 22 and 23 containing
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Synthesis of new representatives of A3B-type carboranylporphyrins based on meso-tetra(pentafluorophenyl)porphyrin transformations

  • Victoria M. Alpatova,
  • Evgeny G. Rys,
  • Elena G. Kononova and
  • Valentina A. Ol'shevskaya

Beilstein J. Org. Chem. 2024, 20, 767–776, doi:10.3762/bjoc.20.70

Graphical Abstract
  • single pentafluorophenyl ring was prepared through the regioselective nucleophilic aromatic substitution reaction of the p-fluorine atoms in 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin with 9-mercapto-m-carborane. The reaction of this porphyrin with sodium azide led to the selective substitution of
  • aromatic substitution; Introduction Porphyrins are available macroheterocyclic compounds which play an important role in diverse areas of scientific research owing to their unique photophysical, electrochemical, and optical properties [1]. They have been widely studied in biomedical applications, as
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2024

Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments

  • Aissam Okba,
  • Pablo Simón Marqués,
  • Kyohei Matsuo,
  • Naoki Aratani,
  • Hiroko Yamada,
  • Gwénaël Rapenne and
  • Claire Kammerer

Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30

Graphical Abstract
  • ), it was non-scalable and displayed low modularity. Indeed, the imide groups along with their substituents were introduced at a rather early stage of the synthesis, with the ultimate synthetic step being the formation of the thiepine ring via a two-fold nucleophilic aromatic substitution by sodium
  • corresponding boronic acid 9 and a Suzuki–Miyaura cross-coupling between 8 and 9 gave rise to dimer 10, followed by the oxidation of both acenaphthene units into 1,8-naphthalic anhydrides. Installation of the thiepine ring was achieved by a double nucleophilic aromatic substitution induced by sodium sulfide
PDF
Album
Review
Published 15 Feb 2024

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • bonds of unactivated aryls or aromatic sulfenylation by electrophilic aromatic substitution (SEAr) has also recently received attention [38]. In recent years, N-(aryl/alkylsulfenyl)succinimides and N-(arylsulfenyl)phthalimides have been widely employed as new alternative sulfenylating reagents in the
  • the best of our knowledge there are no review articles focusing on the application of N-(sulfenyl)succinimides/phthalimides in sulfenylation reactions. In this context, we describe various sulfenylation reactions, such as electrophilic aromatic substitution, ring-opening, dehydrogenative cross
  • nucleophilic trapping of the electrophilic SAr unit to furnish C2-sulfenylated product 65 and Co-complex IV. At last, active cobalt species I regenerated from IV in the presence of AcOH. It should be noted that when R = H, C2-sulfenylated product 65 may be sulfenylated via a thermal electrophilic aromatic
PDF
Album
Review
Published 27 Sep 2023

Cyclization of 1-aryl-4,4,4-trichlorobut-2-en-1-ones into 3-trichloromethylindan-1-ones in triflic acid

  • Vladislav A. Sokolov,
  • Andrei A. Golushko,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2023, 19, 1460–1470, doi:10.3762/bjoc.19.105

Graphical Abstract
  • conjugated enones afford O,C-diprotonated forms under superelectrophilic activation conditions. These dications can participate in electrophilic aromatic substitution reactions with arenes ([11] and references therein). Recently, we have shown that the reaction of (E)-5,5,5-trichloropent-3-en-2-one [Cl3CCH
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • aromatic substitution involved isatin-derived ketimines 49 as the electron-demanding partner to achieve this aromatic p-C–H bond functionalization framing an all substituted stereocenter at the C3 position of the oxindole scaffold in the products 60. A very low reaction temperature (−55/−60 °C) was ideal
  • -derived ketimines 49 was reported by Vila, Pedro and co-workers. Regioisomeric hydroxyquinolines were tested in this reaction to facilitate the electrophilic aromatic substitution on the ortho-carbon atom with respect to the hydroxy group in quinolines 15. The reaction affords oxindole scaffolds 116 with
PDF
Album
Review
Published 28 Jun 2023
Other Beilstein-Institut Open Science Activities