Search results

Search for "catalyzed" in Full Text gives 1761 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Stereoselective mechanochemical synthesis of thiomalonate Michael adducts via iminium catalysis by chiral primary amines

  • Michał Błauciak,
  • Dominika Andrzejczyk,
  • Błażej Dziuk and
  • Rafał Kowalczyk

Beilstein J. Org. Chem. 2024, 20, 2313–2322, doi:10.3762/bjoc.20.198

Graphical Abstract
  • studies by Bolm [12][13], and Juaristi et al. [14]. have significantly advanced chiral secondary amine-catalyzed stereoselective reactions under ball milling conditions, representing a widely explored activation mode in mechanochemical-mediated transformations. However, reports on chiral primary iminium
  • [15][16] or iminium-ion catalysis [17] under ball-mill conditions are scarce, in contrast to the abundance of transformations catalyzed by such covalent catalysis. Among the numerous organocatalytic reactions facilitated by primary amine-based iminium ions, Michael-type additions deserve special
  • time of two days under a pressure of 0.8 GPa [23]. Less reactive benzyl malonates, which allow for the cleavage of a free carboxylic group without the need for harsh base- or acid-mediated conditions [24], undergo additions catalyzed by primary amines [19]. However, these transformations are hampered
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2024

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • aldehyde [10]. Latterly, Yamamoto utilized a 90% deuterated [D2]-isocyanide in a copper catalyzed [3 + 2] cycloaddition to afford a 60% deuterated [D2]-pyrrole [11]. The utility of the Leuckart–Wallach reaction towards the generation of isocyanides was first explored by Dömling [12], yet the use of such
  • method to prepare [D1]-formamides (D–C=O) is through a Leuckart–Wallach reaction with an amine and [D1]-methyl/ethyl formate or [D1]-dimethylformamide [19][20]. Stockmann and co-workers produced [D2]-formamides (N–D, D–C=O) via acid-catalyzed nitrile hydrolysis with HCl and D2O [21]. Thus, using the
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

gem-Difluorination of carbon–carbon triple bonds using Brønsted acid/Bu4NBF4 or electrogenerated acid

  • Mizuki Yamaguchi,
  • Hiroki Shimao,
  • Kengo Hamasaki,
  • Keiji Nishiwaki,
  • Shigenori Kashimura and
  • Kouichi Matsumoto

Beilstein J. Org. Chem. 2024, 20, 2261–2269, doi:10.3762/bjoc.20.194

Graphical Abstract
  • fluorobenziodoxole, are also utilized as F+ equivalents to introduce fluorine atoms into organic molecules. In addition, various trifluoromethylation reagents have been developed so far [5][6][7][8][9][10][11][12][13][14][15][16][17][18]. Transition-metal-catalyzed fluorination and trifluoromethylation methods have
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Selective hydrolysis of α-oxo ketene N,S-acetals in water: switchable aqueous synthesis of β-keto thioesters and β-keto amides

  • Haifeng Yu,
  • Wanting Zhang,
  • Xuejing Cui,
  • Zida Liu,
  • Xifu Zhang and
  • Xiaobo Zhao

Beilstein J. Org. Chem. 2024, 20, 2225–2233, doi:10.3762/bjoc.20.190

Graphical Abstract
  • ) [25] or β-keto esters (Scheme 1a, path 4) [26][27], the aldol reaction between aldehydes and S-ethyl acetothioate followed by oxidation with Dess–Martin periodinane (Scheme 1a, path 5) [28], the hydrolysis of α-oxo ketene dithioacetals (Scheme 1a, path 6) [29] and MgBr2·OEt2-catalyzed acylation of
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2024

Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation

  • Andrey R. Galeev,
  • Maksim V. Dmitriev,
  • Alexander S. Novikov and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2024, 20, 2208–2216, doi:10.3762/bjoc.20.188

Graphical Abstract
  • mainly via metal-catalyzed C–N or C–C bond formation. Despite recent advances in the area of remote C–H functionalization, this strategy still requires some pre-functionalization of the starting material or the use of directing groups [28][29][30][31][32]. An alternative strategy is based on aromatic
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Natural resorcylic lactones derived from alternariol

  • Joachim Podlech

Beilstein J. Org. Chem. 2024, 20, 2171–2207, doi:10.3762/bjoc.20.187

Graphical Abstract
PDF
Album
Supp Info
Review
Published 30 Aug 2024

Novel truxene-based dipyrromethanes (DPMs): synthesis, spectroscopic characterization and photophysical properties

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2024, 20, 2163–2170, doi:10.3762/bjoc.20.186

Graphical Abstract
  • –80%) along with their preliminary photophysical (absorption, emission and time resolved fluorescence lifetime) properties. The condensation reaction for assembling the required DPMs were catalyzed with trifluoroacetic acid (TFA) at 0 °C to room temperature (rt), and the stable dipyrromethanes were
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2024

O,S,Se-containing Biginelli products based on cyclic β-ketosulfone and their postfunctionalization

  • Kateryna V. Dil and
  • Vitalii A. Palchykov

Beilstein J. Org. Chem. 2024, 20, 2143–2151, doi:10.3762/bjoc.20.184

Graphical Abstract
  • Biginelli synthesis of dihydropyrimidinones/thiones/selenones via acetic acid or solvent-free Yb(OTf)3-catalyzed tandem reaction of β-ketosulfone (dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide), an appropriate urea, and arylaldehyde has been developed. The reaction proceeds with high chemo- and
  • ) are the key methodology to access valuable heterocycles for medicinal chemistry projects. The classical Biginelli reaction (1893) is an acid-catalyzed, three-component reaction between an aldehyde, β-ketoester, and urea that produces 3,4-dihydropyrimidin-2(1H)-ones, also known as DHPMs (Scheme 1A
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • ), but is also widely used in transition-metal-catalyzed carbonylation reactions [1][2]. However, carbon monoxide is a flammable gas with a wide explosive range, although colorless and odorless, and requires special care in handling due to its high toxicity. In addition, when carbon monoxide is used in a
  • phenanthridines via silver-catalyzed radical sulfonylation–cyclization of 2-isocyanobiphenyls (Scheme 25) [98]. Wang et al. reported a radical borylative cyclization of 2-isocyanobiaryls with N-heterocyclic carbene borane (Scheme 26) [99]. The boryl radical generated via hydrogen abstraction in the presence of di
PDF
Album
Perspective
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • is that the reaction with methylhydrazine leads to two different regioisomers. Shen et al. used a concept developed by them for the C-acylation of β-ketoesters for the one-pot synthesis of pyrazoles. SmCl3-catalyzed acylation of these yields the 1,3-diketones 4, and after cyclization with hydrazine
  • conducted without solvent. In a similar approach, Khan et al. succeeded in synthesizing pyrazole-4-carbodithioates 67. The products are prepared from phenylhydrazine, aldehydes, and alkyl-3-oxo-3-arylpropane dithioates 66 catalyzed by iron sulfate (Scheme 22) [100]. In this method, aliphatic aldehydes as
  • the corresponding pyrazolone derivatives, thereby providing access to both bis(pyrazolyl) and bis(pyrazolonyl)methanes. Enaminones 81 can be generated as intermediates by condensation of 1,3-dicarbonyl compounds and DMF-dimethylacetal (DMFDMA, 79). The reaction is catalyzed by the solvent 2,2,2
PDF
Album
Review
Published 16 Aug 2024

Diastereoselective synthesis of highly substituted cyclohexanones and tetrahydrochromene-4-ones via conjugate addition of curcumins to arylidenemalonates

  • Deepa Nair,
  • Abhishek Tiwari,
  • Banamali Laha and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2024, 20, 2016–2023, doi:10.3762/bjoc.20.177

Graphical Abstract
  • ]. Other groups have also investigated the Michael donor–acceptor reactivity of curcumins [25]. For instance, a quinine-thiourea catalyzed Michael addition of curcumins to nitroalkenes reported by Ye et al. stopped at the single Michael addition stage [35]. In the subsequent year, Yan et al. demonstrated a
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • engaged aromatic aldehyde-derived NH-tosylhydrazones 83 in an iodide-catalyzed electrochemical formal (3 + 2)-cycloaddition with quinolines 84 to build [1,2,4]triazolo[4,3-a]quinoline derivatives 85. Better yields were obtained with hydrazones bearing an electron-rich substituent on the aromatic ring. The
PDF
Album
Review
Published 14 Aug 2024

Development of a flow photochemical process for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence: in situ-generated 2-benzopyrylium as photoredox catalyst and reactive intermediate

  • Masahiro Terada,
  • Zen Iwasaki,
  • Ryohei Yazaki,
  • Shigenobu Umemiya and
  • Jun Kikuchi

Beilstein J. Org. Chem. 2024, 20, 1973–1980, doi:10.3762/bjoc.20.173

Graphical Abstract
  • Abstract A flow photochemical reaction system for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence was developed, which utilizes in situ-generated 2-benzopyrylium intermediates as the photoredox catalyst and electrophilic substrates. The key 2-benzopyrylium intermediates were
  • [26][27][28][29] is increased. Thus, the flow photochemical process is crucial and beneficial to product formation. Recently, we reported a sequential transformation consisting of a π-Lewis acidic metal-catalyzed cyclization [30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45] and
  • improved the yield of 3t (78%), presumably because of the retardation of the desilylation process (from B to C in Scheme 1a). Conclusion We have demonstrated a flow reaction system for a π-Lewis acidic metal-catalyzed cyclization/photochemical radical addition sequence, affording, in most cases, the 1H
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2024

1,2-Difluoroethylene (HFO-1132): synthesis and chemistry

  • Liubov V. Sokolenko,
  • Taras M. Sokolenko and
  • Yurii L. Yagupolskii

Beilstein J. Org. Chem. 2024, 20, 1955–1966, doi:10.3762/bjoc.20.171

Graphical Abstract
  • ], respectively, while reference [68] provides UV-spectral data of both isomers. 1H, 19F, and 13C NMR data [69][70] are given in Table 2. Chemistry of HFO-1132 Isomerization Iodine-catalyzed cis–trans isomerization of 1,2-difluoroethylene and corresponding equilibrium measurements were described in the 1960s [47
PDF
Album
Review
Published 12 Aug 2024

Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications

  • Matteo Gasparetto,
  • Balázs Fődi and
  • Gellért Sipos

Beilstein J. Org. Chem. 2024, 20, 1922–1932, doi:10.3762/bjoc.20.168

Graphical Abstract
  • ][28]. However, the selectivity of these photoredox reactions is driven by the structural properties of the heteroaromatic ring. During the preparation of this article, the Meggers group published an outstanding enantioselective iron-catalyzed α-amination pathway (Scheme 1b) [29]. The method is widely
  • the blue region. This complex then accelerates the oxidative addition of the aryl halide to the metal, which is usually the rate-limiting step for palladium-catalyzed cross-couplings. Based on these results we decided to perform all Negishi reactions under blue light irradiation. With the optimized
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • photochemical reactions under acidic conditions, which were proposed to proceed via radical cations [20]. Since electrochemical and photochemical aza-Wacker cyclizations can offer ring systems that are difficult to construct through state-of-the-art palladium-catalyzed methods, the mechanistic understanding of
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

Access to 2-oxoazetidine-3-carboxylic acid derivatives via thermal microwave-assisted Wolff rearrangement of 3-diazotetramic acids in the presence of nucleophiles

  • Ivan Lyutin,
  • Vasilisa Krivovicheva,
  • Grigory Kantin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2024, 20, 1894–1899, doi:10.3762/bjoc.20.164

Graphical Abstract
  • cyclization [15][16]. Additionally, the manganese(III)-promoted cyclization of N-alkenyl malonamides [17][18] and the Cu(I)-catalyzed reaction of propiolic acid derivatives with nitrones (Kinugasa reaction) [19][20][21] should also be mentioned, as well as intramolecular C–H insertion using
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • afforded a heterogeneous nanoreactor that could be employed in acid-catalyzed transformations. The GBB reactions were performed with 1 mol % catalyst at 35 °C under solvent-free conditions. A synergistic catalytic effect between polyoxometalate and LDH was evidenced by a higher catalytic activity of the
  • also in the work reported by Shankar et al. [10], already mentioned in chapter 1. The authors established a solvent-catalyzed GBB-3CR to synthesize glycosylated imidazo[1,2-a]pyridines 33 starting from 1-formyl glycals 32; using HFIP as the solvent, the addition of any metal catalyst was not needed
  • comprising a GBB-3CR and a palladium-catalyzed azide-isocyanide coupling to generate imidazo[1,2-a]pyridine-fused 1,3-benzodiazepines 85 (Scheme 27). The GBB reaction smoothly proceeded using 2-azidobenzaldehydes 83, 2-aminopyridines and isocyanides as the precursors. The in situ-generated azides 84 were
PDF
Album
Review
Published 01 Aug 2024

Chiral bifunctional sulfide-catalyzed enantioselective bromolactonizations of α- and β-substituted 5-hexenoic acids

  • Sao Sumida,
  • Ken Okuno,
  • Taiki Mori,
  • Yasuaki Furuya and
  • Seiji Shirakawa

Beilstein J. Org. Chem. 2024, 20, 1794–1799, doi:10.3762/bjoc.20.158

Graphical Abstract
  • without substituents on the carbon–carbon double bond have remained a formidable challenge. To address this limitation, we report herein the asymmetric bromolactonization of 5-hexenoic acid derivatives catalyzed by a BINOL-derived chiral bifunctional sulfide. Keywords: asymmetric catalysis
  • studies of chiral bifunctional sulfide-catalyzed bromolactonizations [26][27][28][29][30][31], mixed solvent systems were investigated. Among the examined solvent systems, a dichloromethane/toluene mixed solvent (3:1 ration) showed the best enantioselectivity (89:11 er). With the optimal catalyst (S)-1g
  • products 3g and 3h were obtained with moderate to good levels of enantioselectivity. Unfortunately, the reaction with a simple 5-hexenoic acid 2i gave a δ-valerolactone 3i in low enantioselectivity. To expand the substrate scope of chiral bifunctional sulfide-catalyzed asymmetric bromolactonizations of 5
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • preparing spiro α-methylene-β-lactones from different steroidal propargylic alcohols [13]. The procedure involves a one-pot Pd-catalyzed cyclocarbonylation of alkynols using 5 mol % of Pd(CH3CN)2Cl2 as a catalyst precursor and 30 mol % of 2-(dibutyl)phosphine-1-(2,6-diisopropylphenyl)-1H-imidazole as
PDF
Album
Review
Published 24 Jul 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • pathway of brassicicenes in Pseudocercospora fijiensis is outlined based on an investigation by Oikawa and co-workers [23]. The biosynthesis begins with the conversion of farnesyl pyrophosphate (FPP) and isopentenyl pyrophosphate (IPP) to geranylgeranyl pyrophosphate (GGPP), catalyzed by the
  • , introduce hydroxy groups at C8 and C16 to produce FD-8β,16-diol (7), and BscE-catalyzed O-methylation generates the putative intermediate 8. The subsequent oxidative allylic rearrangement (8→9), catalyzed by the nonheme iron(II) and 2-oxoglutarate (Fe(II)/2OG)-dependent dioxygenase BscD, was a key step
  • , and subsequent reduction of the exomethylene at C11–C18 catalyzed by BscH yield brassicicene O (12). Renata and co-workers successfully accomplished the chemoenzymatic total syntheses of cotylenol (1) and nine brassicicenes (Scheme 3) [19]. In the cyclization phase, a suitably functionalized 5/8/5
PDF
Album
Review
Published 23 Jul 2024

pKalculator: A pKa predictor for C–H bonds

  • Rasmus M. Borup,
  • Nicolai Ree and
  • Jan H. Jensen

Beilstein J. Org. Chem. 2024, 20, 1614–1622, doi:10.3762/bjoc.20.144

Graphical Abstract
  • showed that our ML model is able to predict the reaction site for pKa-dependent reactions. Now, we test the ML model on a more complex reaction type, namely, borylation reactions. Caldeweyher et al. [45] presented a workflow to predict the iridium-catalyzed borylation site of aryl C–H bonds (SoBo) [45
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Generation of multimillion chemical space based on the parallel Groebke–Blackburn–Bienaymé reaction

  • Evgen V. Govor,
  • Vasyl Naumchyk,
  • Ihor Nestorak,
  • Dmytro S. Radchenko,
  • Dmytro Dudenko,
  • Yurii S. Moroz,
  • Olexiy D. Kachkovsky and
  • Oleksandr O. Grygorenko

Beilstein J. Org. Chem. 2024, 20, 1604–1613, doi:10.3762/bjoc.20.143

Graphical Abstract
  • , is a powerful tool for the combinatorial synthesis of compound libraries. We have shown that the Sc(OTf)3-catalyzed version of the reaction has a wide substrate applicability and established some limitations under the parallel synthesis conditions. In particular, while the method was applicable to a
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2024

Primary amine-catalyzed enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones

  • Pooja Goyal,
  • Akhil K. Dubey,
  • Raghunath Chowdhury and
  • Amey Wadawale

Beilstein J. Org. Chem. 2024, 20, 1518–1526, doi:10.3762/bjoc.20.136

Graphical Abstract
  • 10.3762/bjoc.20.136 Abstract The enantioselective 1,4-addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones catalyzed by a cinchona alkaloid-derived primary amine–Brønsted acid composite is reported. Both enantiomers of the anticipated pyrazole derivatives were obtained in good to excellent
  • disclosed organocatalyzed [5 + 1] double Michael additions between pyrazolones and dienones (Scheme 1b) [23]. Very recently, the Chimni group reported a cinchona-derived squaramide-catalyzed 1,4-Michael addition reaction of pyrazolin-5-ones with 2-enoylpyridines (Scheme 1c) [24]. Recently, we developed an
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • peroxide catalyzed by tetrabutylammonium iodide (TBAI). By utilizing these readily available bulk chemicals a variety of cyclic β-ketocarbonyl derivatives can be efficiently α-azidated under operationally simple conditions. Control experiments support a mechanistic scenario involving in situ formation of
  • an ammonium hypoiodite species which first facilitates the α-iodination of the pronucleophile, followed by a phase-transfer-catalyzed nucleophilic substitution by the azide. Furthermore, we also show that an analogous α-nitration by using NaNO2 under otherwise identical conditions is possible as well
  • conditions are best-suited. We have recently established the use of dibenzoyl peroxide (DBPO) as a very powerful oxidant for oxidative heterofunctionalization reactions using simple nucleophilic inorganic salts as heteroatom transfer reagents [39][41]. This was successfully demonstrated for the non-catalyzed
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024
Other Beilstein-Institut Open Science Activities