Search results

Search for "intramolecular" in Full Text gives 1316 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Harnessing unprotected deactivated amines and arylglyoxals in the Ugi reaction for the synthesis of fused complex nitrogen heterocycles

  • Javier Gómez-Ayuso,
  • Pablo Pertejo,
  • Tomás Hermosilla,
  • Israel Carreira-Barral,
  • Roberto Quesada and
  • María García-Valverde

Beilstein J. Org. Chem. 2024, 20, 1758–1766, doi:10.3762/bjoc.20.154

Graphical Abstract
  • explained by the intramolecular hydrogen bond formed between the hydroxy group and the carbamide substituent, which explains the high deshielding observed in the 1H NMR spectra for the signal of the OH group (around 8.5 ppm). As before, we also explored the stereochemical outcome in the synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2024

Synthesis of polycyclic aromatic quinones by continuous flow electrochemical oxidation: anodic methoxylation of polycyclic aromatic phenols (PAPs)

  • Hiwot M. Tiruye,
  • Solon Economopoulos and
  • Kåre B. Jørgensen

Beilstein J. Org. Chem. 2024, 20, 1746–1757, doi:10.3762/bjoc.20.153

Graphical Abstract
  • aromatic hydrocarbons; Introduction Quinones and their derivatives are applied in various fields such as chemical, environmental, and pharmaceutical industries [1][2][3][4]. Their cyclic diketone structures can easily transform into intramolecular unsaturated structures, and their distinct physical
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • -Spirofuran steroids Intramolecular cyclization of alcohols with allenes is a common method for obtaining 17-spirodihydro-(2H)-furan-3-ones. In 2006, Jiang et al. utilized a known reaction sequence to construct the 17-spiro heterocycle 27 from the commercially available ethylene deltenone 24 [20][21]. In this
  • obtained in a 43% overall yield after acid hydrolysis (Scheme 8). Unsaturated spiro-2H-furan-3-ones have been synthesized using various procedures. In 2000, Lee et al. employed an intramolecular condensation reaction involving an α-ketoester derived from prednisolone precursors to produce the target spiro
  • with similar yields. In 2006, Akita et al. used an intramolecular Knoevenagel–Claisen type condensation between a β-ketoester and an acetate residue to synthesize spiro-2H-furan-3-ones [24]. For instance, the intermediate orthoester 35 was obtained in 86% yield after a cyclization–carbonylation
PDF
Album
Review
Published 24 Jul 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • on a decagram scale in five steps from (+)-limonene oxide (13), involving epoxide manipulation, oxidative cleavage, and intramolecular aldol condensation. Similarly, the right-half fragment, allyl chloride 16, was synthesized from limonene in five steps. Site-selective hydrogenation, oxidative
  • cleavage, and intramolecular cyclization provided 15, followed by functional group manipulation to yield 16. The two segments 14 and 16 were assembled by Nozaki–Hiyama–Kishi (NHK) coupling while controlling the regio- and diastereoselectivities to afford intermediate 17 [25]. Site-selective hydroboration
  • and subsequent oxidation yielded aldehyde 18, a precursor for the intramolecular ring closure of the eight-membered ring. Upon treatment of 18 with BF3·Et2O, diastereoselective Prins cyclization of 18 proceeded to generate secondary alcohol 19. Subsequent one-pot treatment with (n-Bu)4NF·HF resulted
PDF
Album
Review
Published 23 Jul 2024

Oxidation of benzylic alcohols to carbonyls using N-heterocyclic stabilized λ3-iodanes

  • Thomas J. Kuczmera,
  • Pim Puylaert and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 1677–1683, doi:10.3762/bjoc.20.149

Graphical Abstract
  • ]. A crystal structure was additionally obtained for tetrazine 1c. Bond lengths and angles were similar to those of known five-membered NHIs [25], including a strong intramolecular interaction between the nitrogen of the tetrazine and the hypervalent iodine atom (I1–N1: 2.44(4) Å; the sum of VdW radii
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Ring opening of photogenerated azetidinols as a strategy for the synthesis of aminodioxolanes

  • Henning Maag,
  • Daniel J. Lemcke and
  • Johannes M. Wahl

Beilstein J. Org. Chem. 2024, 20, 1671–1676, doi:10.3762/bjoc.20.148

Graphical Abstract
  • subsequent ring-opening reactions. In this regard, we uncovered a novel entry to dioxolanes by intramolecular ring opening of azetidines using ketones and boronic acids. Results and Discussion Photocyclization We initiated our study by a systematic investigating of the Norrish–Yang cyclization for the
PDF
Album
Supp Info
Letter
Published 19 Jul 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • its β-helical structure; reversion of the N-methylation led to complete conformation loss. The methylated asparagine residues at positions 16, 22, and 28 form an intramolecular chain of hydrogen bonds along the outside of the β-helix. Hydrogen atoms from the amide methyl group form hydrogen bonds with
PDF
Album
Review
Published 18 Jul 2024

Divergent role of PIDA and PIFA in the AlX3 (X = Cl, Br) halogenation of 2-naphthol: a mechanistic study

  • Kevin A. Juárez-Ornelas,
  • Manuel Solís-Hernández,
  • Pedro Navarro-Santos,
  • J. Oscar C. Jiménez-Halla and
  • César R. Solorio-Alvarado

Beilstein J. Org. Chem. 2024, 20, 1580–1589, doi:10.3762/bjoc.20.141

Graphical Abstract
  • reference. At this stage, the PIDA–AlBr3 adduct undergoes ionization, giving rise to the corresponding ion pair I-1–Br (ΔG = −31.3 kcal/mol) in a highly exergonic and energetically favorable process. Next, an intramolecular SN2 reaction of the formed aluminum anion transfers a bromine atom to the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Regio- and stereochemical stability induced by anomeric and gauche effects in difluorinated pyrrolidines

  • Ana Flávia Candida Silva,
  • Francisco A. Martins and
  • Matheus P. Freitas

Beilstein J. Org. Chem. 2024, 20, 1572–1579, doi:10.3762/bjoc.20.140

Graphical Abstract
  • -fluoroalkylamines and the respective cations [6]. Intramolecular hydrogen bonds involving either the carboxy or hydroxy group of 4R- and 4S-hydroxyproline have been identified as key factors in stabilizing the favored conformations in the gas phase. Therein, the contribution of a gauche effect due to electron
  • delocalization is considered to be secondary [7]. However, stabilization via intramolecular hydrogen bonding does not seem to significantly impact the conformational stability of 3-fluoropiperidine. In this context, the cis-conformer, with the axial fluorine atom facing the N-hydrogen atom, is either equally or
  • only slightly more stable than the other three conformers in both the gas phase and implicit water [4]. Hence, it appears that strong intramolecular interactions, and not only hydrogen bonding, govern the orientation of the fluorine atom in the F‒C‒C‒N fragment, favoring the cis-isomer of 3
PDF
Album
Supp Info
Full Research Paper
Published 12 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • intramolecular fluorine-atom-transfer (FAT) from an N-fluorinated amide to a pendant carbon-based radical formed from an iron catalyst (Figure 15) [55][56]. This concept of fluorine transfer through a 6-membered transition state was shown to work efficiently from primary, as well as secondary, benzylic radicals
  • yields quoted vs copper catalyst. Iron-catalysed intramolecular fluorine-atom-transfer from N–F amides. Vanadium-catalysed benzylic fluorination with Selectfluor. NDHPI-catalysed radical benzylic C(sp3)–H fluorination with Selectfluor. Potassium persulfate-mediated radical benzylic C(sp3)–H fluorination
PDF
Album
Review
Published 10 Jul 2024

Photoswitchable glycoligands targeting Pseudomonas aeruginosa LecA

  • Yu Fan,
  • Ahmed El Rhaz,
  • Stéphane Maisonneuve,
  • Emilie Gillon,
  • Maha Fatthalla,
  • Franck Le Bideau,
  • Guillaume Laurent,
  • Samir Messaoudi,
  • Anne Imberty and
  • Juan Xie

Beilstein J. Org. Chem. 2024, 20, 1486–1496, doi:10.3762/bjoc.20.132

Graphical Abstract
  • formation of the 1,2-anhydro sugar through intramolecular attack of the 2-hydroxy group of the DMC-activated β-intermediate, followed by dihydroxyazobenzene attacking the anomeric center in an SN2 manner, or by direct nucleophilic SN2 attack on the DMC-activated α-intermediate, to produce the corresponding
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Rapid construction of tricyclic tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine via isocyanide-based multicomponent reaction

  • Xiu-Yu Chen,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2024, 20, 1436–1443, doi:10.3762/bjoc.20.126

Graphical Abstract
  • intermediate B. Thirdly, the intramolecular coupling of the positive charge and the negative charge in intermediate B resulted in the formation of polysubstituted 5-(alkylimino)cyclopenta-1,3-diene intermediate C, which has been described in several papers about the reaction of alkyl isocyanides and electron
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2024

Synthesis of cyclic β-1,6-oligosaccharides from glucosamine monomers by electrochemical polyglycosylation

  • Md Azadur Rahman,
  • Hirofumi Endo,
  • Takashi Yamamoto,
  • Shoma Okushiba,
  • Norihiko Sasaki and
  • Toshiki Nokami

Beilstein J. Org. Chem. 2024, 20, 1421–1427, doi:10.3762/bjoc.20.124

Graphical Abstract
  • intramolecular glycosylation (Scheme 1a) [14]. One-pot two-step synthesis via electrochemical polyglycosylation and intramolecular glycosylation has also been achieved in order to synthesize unnatural cyclic oligosaccharides of glucosamine (Scheme 1b) [15]. Here, we report the direct synthesis of cyclic
  • , entry 4). The reasons for the lower conversion and yield are unclear. However, the lower yield may stem from the lower stability of glycosylation intermediates with a benzyl protecting group at C-3. In all cases, the major product was 1,6-anhydrosugar 7, which was the intramolecular glycosylation
  • DFT calculations in Supporting Information File 1). Therefore, it was proven that the 2,3-oxazolidinone protecting group was powerful enough to prevent intramolecular glycosylation of monomer 14. However, it did not prevent intramolecular glycosylation of the linear disaccharide and promote the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • intermediates through selective FeCl3-catalyzed intramolecular N-annulation. Keywords: α-aminoacetals; fused-ring systems; heterocyclic hemiaminals; heterocyclic N,O-aminals; multicomponent reactions; Introduction N-Fused heterocycles are ubiquitous within crucial molecules, including biologically active
  • heteroring closure, positioning appropriate functions both at N-3 and C-4 of the (thio)hydantoin frameworks 4a–r (30–81%) broadening their usable decorations (Scheme 2). Recently, we reported that compounds 4a, 4f, and 4m undergo an intramolecular cyclization process through the involvement of the restored
  • (entries 1–7, Table 1). Similarly to what was observed by Yu and co-workers for the intramolecular cyclization of alkynyl aldehyde acetals [28][29], it was found that the use of FeCl3 provided the better result in terms of overall yield (entry 3, Table 1). Moreover, the choice of iron(III) seemed to have
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation

  • Akanksha Chhikara,
  • Fan Wu,
  • Navdeep Kaur,
  • Prabagar Baskaran,
  • Alex M. Nguyen,
  • Zhichang Yin,
  • Anthony H. Pham and
  • Wei Li

Beilstein J. Org. Chem. 2024, 20, 1405–1411, doi:10.3762/bjoc.20.122

Graphical Abstract
  • catalysis, which often involves the catalytic use of an iodoarene with stoichiometric oxidants such as MCPBA, Selectfluor, etc. [18][19][20]. Earlier and recent hypervalent iodine-catalyzed olefin halofunctionalizations by several groups have predicated on the use of intramolecular olefin substrates
PDF
Album
Supp Info
Letter
Published 24 Jun 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • intramolecular synthetic strategies. Immense applications in the synthesis of hydroxy acids and esters, heterocycles, fused carbocycles, natural products, and others with broad substrate scope have raised profound interest from methodological and synthetic standpoints. The ongoing development of reagents
  • aldehyde molecules, forming an alcohol and an acid [1][2][3][4]. Since its discovery in 1853, the Cannizzaro reaction has emerged as an important reaction in synthetic organic chemistry with intermolecular, crossed, and intramolecular versions as demonstrated by numerous applications. Notably, the
  • formaldehyde is used as a reductant. This variant is known as the crossed-Cannizzaro reaction. On the other hand, an intramolecular Cannizzaro reaction occurs when both aldehyde groups are present in a single molecule. In this scenario, one aldehyde group is reduced to the corresponding alcohol, while the
PDF
Album
Review
Published 19 Jun 2024

Synthesis of 1,2,3-triazoles containing an allomaltol moiety from substituted pyrano[2,3-d]isoxazolones via base-promoted Boulton–Katritzky rearrangement

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 1334–1340, doi:10.3762/bjoc.20.117

Graphical Abstract
  • , intramolecular recyclization accompanied by opening of the isoxazole ring and formation of the N–N bond leads to intermediate B. Finally, target 1,2,3-triazole 4 is produced via acidification of anion B. Next, we tried to expand the presented rearrangement to hydrazones derived from aliphatic hydrazines (MeNHNH2
  • recyclization is depicted at Scheme 8. Initially, hydrazine molecule is added to double bond of the pyranone ring leading to zwitter-ion A. Further, cleavage of dihydropyranone fragment results in intermediate B. Next, enehydrazine C is formed from compound B through migration of a proton. Then, intramolecular
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2024
Graphical Abstract
  • second step of this reaction, regio- and stereochemically controlled intramolecular cyclization leads to the formation of versatile nitrogen-containing tricyclic systems. However, these useful organic transformations are usually carried out in highly toxic organic solvents such as benzene, toluene
  • Diels–Alder reactions and can be used repeatedly without significant degradation. These materials also allow the reaction to be completed in less time, with less energy consumption and higher yields. Keywords: biobased solvent; epoxyisoindoles; furanics; green chemistry; intramolecular Diels–Alder
  • importance in intramolecular Diels–Alder reactions, the effects of solvents such as glycerol, polyethylene glycol, organic carbonates, deep eutectic solvents, supercritical CO2 and H2O have recently been extensively studied [65][66][67]. Recently, attention has also been drawn to photoinduced oxidative [4
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2024

Domino reactions of chromones with activated carbonyl compounds

  • Peter Langer

Beilstein J. Org. Chem. 2024, 20, 1256–1269, doi:10.3762/bjoc.20.108

Graphical Abstract
  • electrophilicity. The products are finally generated by intramolecular formation of a semi-acetal. The yields were generally good (56–78%). The yields for pentafluoroethyl- and heptafluoropropyl-substituted derivatives were slightly better than the yields of trifluoromethyl-substituted derivatives which might be
  • -Halochromones Dimethyl acetone-1,3-dicarboxylate The reaction of dimethyl acetone-1,3-dicarboxylate (3) with 3-bromochromone (15a) afforded product 33 (Scheme 17) [32]. The first step is again a 1,4-addition to give intermediate P. Subsequent cyclization by intramolecular nucleophilic attack of the oxygen atom
  • intramolecular nucleophilic attack of the oxygen to the halide to give intermediate U and subsequent ring-cleavage. The reaction of 3-ketoamide 34a (R3 = Me, R4 = Ph) with 3-chloro-, 3-bromo-, and 3-iodochromone showed that the yields strongly depend on the type of halogen atom located at position 3 of the
PDF
Album
Review
Published 29 May 2024

Competing electrophilic substitution and oxidative polymerization of arylamines with selenium dioxide

  • Vishnu Selladurai and
  • Selvakumar Karuthapandi

Beilstein J. Org. Chem. 2024, 20, 1221–1235, doi:10.3762/bjoc.20.105

Graphical Abstract
  • . It crystallized in a triclinic crystal system in the space group P−1. It was structurally similar to the other oxamides 3 and 9. It showed an intramolecular hydrogen bonding between the NH and the carbonyl group of the methoxy ester. A layer-by-layer packing was observed in the crystal structure
  • space group C2/c. The molecular structure of the diorganyl monoselenide 11 is shown in Figure 5. It crystallized in a triclinic crystal system in the space group P−1. The C–Se–C bond angle was found to be 99.01°. Both inter- and intramolecular hydrogen bonding were noted in the structure (Figure S39
  • arylamine reactivity. The NBO analysis was carried out using the same basis set, B3LYP/6-31G(d,p). The natural charge (q) of the nitrogen atom, occupancy of the nitrogen lone pair orbital, second-order perturbation energy (E) for intramolecular donor–acceptor interactions, and the donation of electron
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Stability trends in carbocation intermediates stemming from germacrene A and hedycaryol

  • Naziha Tarannam,
  • Prashant Kumar Gupta,
  • Shani Zev and
  • Dan Thomas Major

Beilstein J. Org. Chem. 2024, 20, 1189–1197, doi:10.3762/bjoc.20.101

Graphical Abstract
  • seven-membered ring and the remaining four 5-7 bicyclic compounds with the carbocation on the five-membered ring. The variations in energy within the groups of carbocations (i.e., 6-6 and two kinds of 5-7 bicyclic carbocations) can be ascribed to intramolecular repulsion interactions, as seen from non
  • -covalent interactions plots. Despite the structural similarities between germacrene A and hedycaryol cations, they possess a somewhat different stability trend. These differences are attributed to C+···OH intramolecular interactions present in some hedycaryol cations, which are absent in the carbocations
  • isoprenoid allylic carbocation has the capability to engage in standard carbocation reactions, including cyclization via intramolecular olefin attack at the positively charged center, Wagner–Meerwein rearrangements, and hydride or proton shifts. This sequence concludes either through deprotonation, resulting
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Bismuth(III) triflate: an economical and environmentally friendly catalyst for the Nazarov reaction

  • Manoel T. Rodrigues Jr.,
  • Aline S. B. de Oliveira,
  • Ralph C. Gomes,
  • Amanda Soares Hirata,
  • Lucas A. Zeoly,
  • Hugo Santos,
  • João Arantes,
  • Catarina Sofia Mateus Reis-Silva,
  • João Agostinho Machado-Neto,
  • Leticia Veras Costa-Lotufo and
  • Fernando Coelho

Beilstein J. Org. Chem. 2024, 20, 1167–1178, doi:10.3762/bjoc.20.99

Graphical Abstract
  • synthesis has been reported for several transformations, such as epoxide opening [56], ketal formation and deprotection [57][58], Mannich reaction [59], intramolecular Sakurai cyclization [60], alcohol oxidation [61], aromatic hydrocarbon nitration [62], imine allylation [63], Knoevenagel condensation [64
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • moderate-to-high yields with aliphatic and aromatic alcohols (Scheme 18). In addition, this protocol allowed for the synthesis of indole through an intramolecular reaction and a resveratrol-derived amine. However, this catalytic method did not tolerate some functional groups such as nitro, ester, and
  • activated by the base, affording the active amido complex Mn1-a which reacts with the alcohol to form the alkoxo-type complex Mn1-b. An intramolecular ligand-assisted mechanism produced the aldehyde and manganese hydride complex Mn1-c after protonation of the intermediate. The aldehyde then underwent aldol
  • intramolecular manganese amidate rather than the traditional β-hydride elimination process. In 2018, Maji’s group reported the α-alkylation of ketones with primary alcohols using a phosphine-free manganese catalyst generated in situ from Mn(CO)5Br and L3 [58]. Under optimized conditions (2 mol % Mn(CO)5Br, 10
PDF
Album
Review
Published 21 May 2024

Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-b]pyridines

  • Vladislav V. Nikol’skiy,
  • Mikhail E. Minyaev,
  • Maxim A. Bastrakov and
  • Alexey M. Starosotnikov

Beilstein J. Org. Chem. 2024, 20, 1069–1075, doi:10.3762/bjoc.20.94

Graphical Abstract
  • the basis of readily available 2-chloro-3-nitropyridines via the intramolecular nucleophilic substitution of the nitro group as a key step. The previously unknown base-promoted Boulton–Katritzky rearrangement of isoxazolo[4,5-b]pyridine-3-carbaldehyde arylhydrazones into 3-hydroxy-2-(2-aryl[1,2,3
  • for the cyclization. Alternatively (Scheme 1B), isoxazolo[4,5-b]pyridines can be constructed via intramolecular cyclization of 4-(propargylamino)isoxazoles [21] or through reactions of 4-amino-5-benzoylisoxazoles with ketones or 1,3-dicarbonyl compounds [10][13]. These and some additional examples of
  • shown in Scheme 1C. Since the key step of the synthesis is the intramolecular nucleophilic substitution of the aromatic nitro group, we assumed that the presence of an electron-withdrawing substituent at the pyridine ring would facilitate this transformation. Results and Discussion According to the
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Structure–property relationships in dicyanopyrazinoquinoxalines and their hydrogen-bonding-capable dihydropyrazinoquinoxalinedione derivatives

  • Tural N. Akhmedov,
  • Ajeet Kumar,
  • Daken J. Starkenburg,
  • Kyle J. Chesney,
  • Khalil A. Abboud,
  • Novruz G. Akhmedov,
  • Jiangeng Xue and
  • Ronald K. Castellano

Beilstein J. Org. Chem. 2024, 20, 1037–1052, doi:10.3762/bjoc.20.92

Graphical Abstract
  • from 388 to 423 nm, indicative of π–π* transitions. On the contrary, DPQDs exhibited more structured, blue-shifted bands with λmax from 357–400 nm. At the same time, DCPQs exhibit intramolecular charge transfer (ICT) bands at lower energy due to the dicyanopyrazinopyrazine moiety as a strong acceptor
  • displaying some localization on the dicyanopyrazinopyrazine acceptor. Notably, compound 3a displays the highest orbital density separation between donors and acceptors – an attribute relevant to efficient intramolecular charge transfer processes. This aligns with the observed lower optical HOMO–LUMO gap for
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024
Other Beilstein-Institut Open Science Activities