Search results

Search for "nucleophiles" in Full Text gives 593 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Tandem diazotization/cyclization approach for the synthesis of a fused 1,2,3-triazinone-furazan/furoxan heterocyclic system

  • Yuri A. Sidunets,
  • Valeriya G. Melekhina and
  • Leonid L. Fershtat

Beilstein J. Org. Chem. 2024, 20, 2342–2348, doi:10.3762/bjoc.20.200

Graphical Abstract
  • coupling reactions of the obtained compounds 2. It should be emphasized that amino-1,2,5-oxadiazoles correspond to very weak nucleophiles due to the highly electron-withdrawing effect of the heterocycle. Our previous efforts achieved a certain result indicating that (1,2,5-oxadiazolyl)diazonium salts
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2024

Stereoselective mechanochemical synthesis of thiomalonate Michael adducts via iminium catalysis by chiral primary amines

  • Michał Błauciak,
  • Dominika Andrzejczyk,
  • Błażej Dziuk and
  • Rafał Kowalczyk

Beilstein J. Org. Chem. 2024, 20, 2313–2322, doi:10.3762/bjoc.20.198

Graphical Abstract
  • nucleophiles in this transformation. Keywords: asymmetric catalysis; iminium catalysis; mechanochemistry; organocatalysis; thioesters; Introduction Mechanochemistry, particularly solventless processes under ball milling conditions, offers the opportunity to devise unconventional reaction pathways [1][2][3][4
  • enhancing the reactivity of a relatively inert acceptor does not necessarily lead to increased reaction rates, involves the use of more reactive nucleophiles. In this context, varying the stabilization energy of carboxylic acid derivatives by switching from oxoesters to thioesters is the significant
  • the ideal tool in addition to reactions to cyclic enones and benzylidene acetones. However, our concern was whether the thioester group, whose activity towards nitrogen nucleophiles significantly exceeds that of analogous oxo-esters [26][27][40], would remain unaffected in the presence of a
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
  • have also been used to predict the Mayr–Patz nucleophilicity parameter N, which estimates the nucleophilicity of a nucleophile based on experimentally measured kinetic data. The MLR models are used to predict N for more than 1200 nucleophiles, enabling the prediction of N for further nucleophiles [98
  • CPA chemical space. Notably, this data-driven technique is not restricted to the reaction chosen by the authors. The UTS, combined with 19 ‘test set’ catalysts, 5 nucleophiles and 5 electrophiles, constitutes a dataset of 1,075 reactions with associated enantioselectivity values (Figure 8). The size
  • additions to imines, comprising alcohols, thiols, phosphonates, diazoacetamides, peroxides, benzothiazolines and more as nucleophiles. Apart from reactant classes, the reactions also vary in additives, and solvent among others. Since these reactions all adhere to the same mechanism of enantioinduction, the
PDF
Album
Review
Published 10 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal
PDF
Album
Perspective
Published 26 Aug 2024

From perfluoroalkyl aryl sulfoxides to ortho thioethers

  • Yang Li,
  • Guillaume Dagousset,
  • Emmanuel Magnier and
  • Bruce Pégot

Beilstein J. Org. Chem. 2024, 20, 2108–2113, doi:10.3762/bjoc.20.181

Graphical Abstract
  • study, many research groups described a strategy for ortho-C–H functionalization of aryl sulfoxides with various nucleophiles via a cascade reaction of interrupted Pummerer reaction/sigmatropic rearrangement (Scheme 1a) [6][7][8][9][10][11]. A large range of nucleophiles, such as phenols [12][13][14][15
  • with trifluoromethanesulfonic anhydride, allowing the incorporation of two difluoroalkyl groups [47]. By blocking the rearomatization after the [3,3]-rearrangement, external nucleophiles could be trapped to give mono-difluoroalkylated cycles. More recently, in 2019, Peng’s group reported also the ortho
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2024

Radical reactivity of antiaromatic Ni(II) norcorroles with azo radical initiators

  • Siham Asyiqin Shafie,
  • Ryo Nozawa,
  • Hideaki Takano and
  • Hiroshi Shinokubo

Beilstein J. Org. Chem. 2024, 20, 1967–1972, doi:10.3762/bjoc.20.172

Graphical Abstract
  • LUMO (Figure 1) [11]. Reactions with nucleophiles (Nu) proceed with perfect regioselectivity at the distal β-position relative to the meso-position [12][13][14][15]. On the other hand, reactions with electrophiles (El) also occur preferentially at the β-positions, but the regioselectivity depends on
PDF
Album
Supp Info
Letter
Published 12 Aug 2024

1,2-Difluoroethylene (HFO-1132): synthesis and chemistry

  • Liubov V. Sokolenko,
  • Taras M. Sokolenko and
  • Yurii L. Yagupolskii

Beilstein J. Org. Chem. 2024, 20, 1955–1966, doi:10.3762/bjoc.20.171

Graphical Abstract
  • -iodobenzoate. Under similar conditions, 4-nitroiodobenzene produced exclusively the corresponding homocoupling product 4,4’-nitrobiphenyl. Additional author remarks Other attempts to utilize 1,2-difluoroethylene in reactions with N-, O-, and C- nucleophiles carried out in our group were unsuccessful [78
  • ], while S-nucleophiles, namely thiophenolates, led to products upon fluorine atom substitution, which were isolated in low yield. Corresponding disulfides were isolated as major products, even when the reaction was carried out under inert atmosphere, suggesting a radical process. In summary, we compiled
PDF
Album
Review
Published 12 Aug 2024

Regioselective alkylation of a versatile indazole: Electrophile scope and mechanistic insights from density functional theory calculations

  • Pengcheng Lu,
  • Luis Juarez,
  • Paul A. Wiget,
  • Weihe Zhang,
  • Krishnan Raman and
  • Pravin L. Kotian

Beilstein J. Org. Chem. 2024, 20, 1940–1954, doi:10.3762/bjoc.20.170

Graphical Abstract
  • employed as nucleophiles in chemical transformations, and a mixture of both N1- and N2-alkylated products is formed, depending on the reaction conditions, with little selectivity in regards to substituent effects [27][28][29][30][31][32][33]. Considering the importance of indazoles as a widely used
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2024

A new platform for the synthesis of diketopyrrolopyrrole derivatives via nucleophilic aromatic substitution reactions

  • Vitor A. S. Almodovar and
  • Augusto C. Tomé

Beilstein J. Org. Chem. 2024, 20, 1933–1939, doi:10.3762/bjoc.20.169

Graphical Abstract
  • equivalents of the nucleophile, it is possible to promote the substitution of one or more fluorine atoms. Nucleophilic substitution of fluorine atoms often necessitates harsh conditions such as elevated temperatures, strong bases, or strong nucleophiles, but our findings demonstrate that this process can be
  • excellent nucleophiles and generally react under mild conditions, resulting in the substitution of the 4-F atom of the pentafluorophenyl groups. In this case, reactions with thiols were performed in dry DMF and K2CO3 was used as the base. Three different thiols were tested: pyridine-4-thiol, pyridine-2
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • representative radical cation precursors that are widely used to realize the formation of unique bonds. The respective radical cations are trapped by various nucleophiles under radical and/or ion control, where kinetic and/or thermodynamic effects are expected to be dominant. Typical examples that clearly show
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

Access to 2-oxoazetidine-3-carboxylic acid derivatives via thermal microwave-assisted Wolff rearrangement of 3-diazotetramic acids in the presence of nucleophiles

  • Ivan Lyutin,
  • Vasilisa Krivovicheva,
  • Grigory Kantin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2024, 20, 1894–1899, doi:10.3762/bjoc.20.164

Graphical Abstract
  • 191036, Russian Federation 10.3762/bjoc.20.164 Abstract In this work, we report an efficient approach to 2-oxoazetidine-3-carboxylic acid derivatives based on a thermally promoted Wolff rearrangement of diazotetramic acids in the presence of nucleophiles. The method allows easy variation of the
  • well as a wide range of nucleophiles provides access to a structural diversity of medically relevant 2-oxoazetidine-3-carboxylic acid amides and esters. Keywords: β-lactams; diazotetramic acids; nucleophiles; spirocycles; thermolysis; Wolff rearrangement; Introduction The importance of the β-lactam
  • ketenes 2 generated by a thermally promoted Wolff rearrangement [3]. The interaction of such ketenes with nucleophiles of different nature could serve as a source of libraries of structurally diverse 2-oxoazetidine-3-carboxylic acid derivatives 3 (Scheme 1). The 2-oxoazetidine-3-carboxylic acid
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2024

Ring opening of photogenerated azetidinols as a strategy for the synthesis of aminodioxolanes

  • Henning Maag,
  • Daniel J. Lemcke and
  • Johannes M. Wahl

Beilstein J. Org. Chem. 2024, 20, 1671–1676, doi:10.3762/bjoc.20.148

Graphical Abstract
  • by Norrish–Yang cyclization, which employs easily accessible α-aminoacetophenones as starting materials [11][12][13][14][15]. Furthermore, ring-opening reactions of azetidines have been recently achieved using sulfur and oxygen nucleophiles [16][17][18][19][20][21][22][23][24][25]. However, methods
PDF
Album
Supp Info
Letter
Published 19 Jul 2024

New triazinephosphonate dopants for Nafion proton exchange membranes (PEM)

  • Fátima C. Teixeira,
  • António P. S. Teixeira and
  • C. M. Rangel

Beilstein J. Org. Chem. 2024, 20, 1623–1634, doi:10.3762/bjoc.20.145

Graphical Abstract
  • chlorine atoms by different nucleophiles. The devised strategy involved the attack of the O or N atoms of the arylphosphonate nucleophile at the position of the chlorine atom of triazine, at its 2, 4 and 6 carbon positions (Figure 1). Most of these nucleophiles bearing a phosphonate group were not
  • chlorine atoms of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride, 1) by the previously synthesized nucleophiles. The general scheme to obtain the desired triazinephosphonates (TPs) from the synthesized amino nucleophiles are represented in Scheme 5. Initially, the 4-aminophenyl derivatives were
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • nucleophiles, including water to give benzylic alcohols, or methanol to give methoxy products. Musacchio and co-workers reported a similar approach for benzylic fluorination (Figure 33) [84], which followed a similar mechanistic blueprint to that reported by the Doyle group. Using tert-butoxide radicals
  • HAT reagent. Difluorination could be achieved using excess fluoride and HAT reagent. Other nucleophiles were amenable to the reaction conditions, allowing various benzylic functionalisation reactions, including acetoxylation and chlorination. In 2023, Hamashima and co-workers disclosed an analogous
PDF
Album
Review
Published 10 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • are not always readily accessible. Typically, the preparation methods involve SNAr reactions with N-centered nucleophiles [5], nitroarene reduction [6] and transition metal (e.g., Pd, Cu)-catalyzed C–N cross coupling of aryl halides, aryl sulfonates or arylboronic acid reagents with ammonia or NH
  • –dehydrogenative aromatization strategy with amines as nucleophiles [11][12]. For instance, the groups of Deng and Li reported the Pd catalyzed oxidative coupling of 2-cyclohexenones with amines [13]. Later, the same group demonstrated the direct amination of phenols by reductive coupling of in situ generated 2
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner–Meerwein rearrangement

  • Ziya Dağalan,
  • Muhammed Hanifi Çelikoğlu,
  • Saffet Çelik,
  • Ramazan Koçak and
  • Bilal Nişancı

Beilstein J. Org. Chem. 2024, 20, 1462–1467, doi:10.3762/bjoc.20.129

Graphical Abstract
  • used as nucleophiles. First, optimization experiments were carried out for fluoroalkoxy reactions with benzonorbornadiene (1a, Table 1). As a result of experiments conducted in six different solvents at room temperature with 1.0 equivalent of selectflor and 1.0 equivalent of methanol, it was observed
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Rapid construction of tricyclic tetrahydrocyclopenta[4,5]pyrrolo[2,3-b]pyridine via isocyanide-based multicomponent reaction

  • Xiu-Yu Chen,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2024, 20, 1436–1443, doi:10.3762/bjoc.20.126

Graphical Abstract
  • generated by addition reaction of isocyanides to electron-deficient alkynes, which were sequentially trapped by various electrophiles and nucleophiles to give versatile acyclic and heterocyclic compounds [15][16][17][18][19][20][21][22][23][24][25][26]. In recent years, many multicomponent reactions based
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2024

Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation

  • Akanksha Chhikara,
  • Fan Wu,
  • Navdeep Kaur,
  • Prabagar Baskaran,
  • Alex M. Nguyen,
  • Zhichang Yin,
  • Anthony H. Pham and
  • Wei Li

Beilstein J. Org. Chem. 2024, 20, 1405–1411, doi:10.3762/bjoc.20.122

Graphical Abstract
  • .20.122 Abstract Hypervalent iodine catalysis has been widely utilized in olefin functionalization reactions. Intermolecularly, the regioselective addition of two distinct nucleophiles across the olefin is a challenging process in hypervalent iodine catalysis. We introduce here a unique strategy using
  • simple lithium salts for hypervalent iodine catalyst activation. The activated hypervalent iodine catalyst allows the intermolecular coupling of soft nucleophiles such as amides onto electronically activated olefins with high regioselectivity. Keywords: amide coupling; hypervalent iodine catalysis
  • nucleophiles were incorporated (Scheme 1b) [29][30][31][32][33][34][35][36][37][38][39][40]. Intermolecular hypervalent iodine catalysis with the regioselective additions of two distinct nucleophilic functionalities across an olefin, however, remains challenging with limited solutions [41][42][43][44][45][46
PDF
Album
Supp Info
Letter
Published 24 Jun 2024

The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids

  • Carolina S. Marques,
  • Aday González-Bakker and
  • José M. Padrón

Beilstein J. Org. Chem. 2024, 20, 1213–1220, doi:10.3762/bjoc.20.104

Graphical Abstract
  • derivatives were 8h and 8k. The former is an α,β-unsaturated amide, which could react with nucleophiles inside the cell and thus explain its relative potency. The latter bears a long aliphatic side chain (thirteen carbon atoms), which could allow anchoring to cell membranes, representing a potential target
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • to the scientific community [10][11][12]. In this process, first, the metal-catalyzed dehydrogenation of the alcohol provides a reactive substrate for coupling with nucleophiles and the active metal hydride species. Later, the borrowed hydrogen is used in the final step to reduce unsaturated
PDF
Album
Review
Published 21 May 2024

Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A

  • Maksim V. Kvach,
  • Stefan Harjes,
  • Harikrishnan M. Kurup,
  • Geoffrey B. Jameson,
  • Elena Harjes and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2024, 20, 1088–1098, doi:10.3762/bjoc.20.96

Graphical Abstract
  • phosphinamide Vb inhibited hCDA similarly to dZ (IIc) at pH 7.4, whereas negatively charged phosphinic acid Va showed some inhibition of hCDA only at pH 4.7. Unfortunately, due to the low stability of charge-neutral phosphinamide Vb towards nucleophiles, we could not incorporate it into DNA. Synthesis of a DMT
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Structure–property relationships in dicyanopyrazinoquinoxalines and their hydrogen-bonding-capable dihydropyrazinoquinoxalinedione derivatives

  • Tural N. Akhmedov,
  • Ajeet Kumar,
  • Daken J. Starkenburg,
  • Kyle J. Chesney,
  • Khalil A. Abboud,
  • Novruz G. Akhmedov,
  • Jiangeng Xue and
  • Ronald K. Castellano

Beilstein J. Org. Chem. 2024, 20, 1037–1052, doi:10.3762/bjoc.20.92

Graphical Abstract
  • , ethanol, ethylene glycol, and diethylene glycol in the presence of excess triethylamine (Scheme 2). These products provide evidence for the in situ formation of DCPQ 7a and demonstrate its ability to undergo trapping with various nucleophiles through an SNAr mechanism. An alternate strategy was employed
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions

  • Naoki Miyamoto,
  • Daichi Koseki,
  • Kohei Sumida,
  • Elghareeb E. Elboray,
  • Naoko Takenaga,
  • Ravi Kumar and
  • Toshifumi Dohi

Beilstein J. Org. Chem. 2024, 20, 1020–1028, doi:10.3762/bjoc.20.90

Graphical Abstract
  • attractive class of reagents due to their stability, accessibility, and diverse chemical reactivity [1]. Diaryliodonium(III) salts, in particular, have been widely recognized as efficient arylating reagents for a range of carbon, nitrogen, oxygen, sulfur, and other nucleophiles, and can be employed in the
  • 1,3,5-trimethoxybenzene are highly recommended for chemoselective arylation processes. Aryl(TMP)iodonium(III) salts have been successfully used as transition metal-free arylating reagents for various nucleophiles such as nitrogen- [23][24][25][26], oxygen- [13][27][28][29], sulfur- [30], and carbon- [31
  • ] nucleophiles due to their excellent reactivity and aryl group selectivity over aryl(anisyl)iodonium(III) salts [32] and aryl(mesityl)iodonium(III) salts [33]. Based on our previously reported conditions for the synthesis of diaryliodonium(III) salts [21], we designed a more practical synthetic protocol for the
PDF
Album
Supp Info
Letter
Published 03 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • %, respectively) in methanol under 90 bar of CO at 100 °C for two hours (Scheme 6). As already seen, triple bonds can be activated by Pd(II) catalysts towards the addition of nucleophiles in the right position, leading to heterocyclization reactions. Taking advantage of this possibility, in the Della Cá group, a
  • alcohols were used as the nucleophiles (Scheme 32). About three years later, the same group developed a simple and efficient method to access CO-linked heterocyclic scaffolds by a Pd-catalyzed carbonylative cyclization of alkene–indole derivatives with 2-alkynylanilines and 2-alkynylphenols, in the
PDF
Album
Review
Published 30 Apr 2024

Direct synthesis of acyl fluorides from carboxylic acids using benzothiazolium reagents

  • Lilian M. Maas,
  • Alex Haswell,
  • Rory Hughes and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2024, 20, 921–930, doi:10.3762/bjoc.20.82

Graphical Abstract
  • employed as acylation reagents [1][2][3]. The strong C–F bond makes acyl fluorides relatively stable towards hydrolysis and easier to handle than other acyl halides [4][5][6][7][8]. Their reactions with nucleophiles are typically less violent than for the corresponding acyl chlorides with acyl fluorides
  • − to another molecule of thioester 3 thus sets off a chain process, delivering acyl fluoride 2 and regenerating the fluoride nucleophile. A series of experiments conducted with thioester 3a suggest a number of nucleophiles feasibly present in the reaction mixture can initiate the chain process [34
  • . Mechanistic experiments. (a) Conversion of thioester 3a into acyl fluoride 2a in the presence of DIPEA. (b) Conversion of thioester 3a into acyl fluoride 2a in the presence of carboxylate and fluoride nucleophiles. (c) Two-stage deoxyfluorination reaction using 0.5 equiv of BT-SCF3. 19F NMR yields using α,α,α
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024
Other Beilstein-Institut Open Science Activities